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”As far as the laws of mathematics refer to reality, they are not certain; and as far as they
are certain, they do not refer to reality. . . ”

Albert Einstein (1879 - 1955)





Abstract

This thesis assesses the usability of time-domain model-based Fault Detection and Identifi-
cation (FDI) methods for application to a horizontal axis wind turbine (HAWT) that uses
pitch-to-vane control. In particular, two FDI scenarios are considered: the estimation of an
unknown actuator gain and an unknown actuator delay.

The wind acts as a disturbance to the system, for which no measurement is available.
This, together with the fact that only closed-loop measurements are available, represents
the main challenge in this thesis. Two classes of model-based approaches are analyzed: the
system identification approach, and the observer-based approach using the Kalman filter. A
representative linear HAWT model has been designed and used as a simulation environment
to test the various approaches.

It has been shown that no reliable system model can be identified from the input/output
data because of the closed-loop measurements, so a system identification approach cannot be
used for FDI purposes in closed loop.

Two feasible FDI algorithms that are based on the Kalman filter are presented: the
discrete-time Kalman filter and the Interacting Multiple-Model (IMM) estimator. Both algo-
rithms provide a reliable estimate of the wind speed by including it in an augmented system
state. They have been applied for online estimation of an unknown actuator gain. The
discrete-time Kalman filter requires this gain together with the wind to be included in an
augmented system state. The IMM estimator requires a suitable model set that describes
a fault-free and a faulty HAWT to be defined instead. The discrete-time Kalman filter has
a superior performance for the detection and identification of an unknown pitch actuator
gain. The performance of the IMM estimator is slightly lower, but still good enough for FDI
purposes. However, the IMM estimator is a more versatile algorithm: it has been applied
successfully to estimate an unknown actuator delay, which affects the system behavior in a
nonlinear way.

iii





Acknowledgements

This master’s thesis is the result of ten months of work at the chair of Systems & Control
Engineering, held by Michel Verhaegen. The idea of this project arose from Michel’s contacts
with Tim van Engelen of the Energy research Centre of the Netherlands (ECN), which resulted
in a NOVEM project headed by Vincent Verdult. In the framework of this NOVEM project,
I investigated model-based fault detection and identification for wind turbine systems.

First of all, I would like to thank Michel Verhaegen for realizing the importance of this
research topic. Michel, you showed me how to do research in the field of systems engineering
and made sure that I stayed on the right course. Thank you for your constructive ideas and
helpful tips during the course of the research. Vincent, thank you for guiding me through
my master’s thesis project. With your innovative ideas and critical comments you sometimes
managed to keep me off the street, as you would say it, but the result wouldn’t have been
the same without you. I owe much gratitude to Stoyan Kanev, who on many occasions
shared his knowledge of systems engineering with me. He was always there to help me with
the implementation of algorithms in Matlab and gave useful tips on a clear formulation of
the results. Furthermore, I would like to thank Niek Bergboer for his support on LATEX
and systems identification, and Samir Mes̆ic for his careful review of my first results and his
constructive remarks.

I would also like to thank Tim van Engelen and Pieter Schaak from ECN for their help in
understanding the field of wind engineering and the physics involved, with a special word of
gratitude to Pieter for his large contribution to the realistic wind turbine model. Furthermore,
I want to thank Koert Lindenburg from ECN for organizing an introduction course on wind
turbine simulation in October, which Vincent and I were able to attend.

In addition, I would like to thank Jeroen Verschuur for being in my graduation committee
and for his help with Simulink, and Bas Benschop, who kept the group hardware and software
running during the course of the project. I am also grateful to Peter Moll, for our teamwork
during several chair courses and for reading the draft of my thesis. Finally, I want to thank
my other fellow students Karel Hinnen, Sara van der Hoeven and Benno Aalderink and the
former group members Gerard Nijsse, Rufus Fraanje, Hiroshi Oku and Ichiro Jikuya for their
company and support.

Stijn Donders
Enschede, June 2002

v





Contents

Abstract iii

Acknowledgements v

List of notations and symbols xi

List of abbreviations xiii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Fault detection and identification 5
2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 States and signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 System properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Fault detection and identification methods . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Model-based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Signal-based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Expert system and artificial intelligence approaches . . . . . . . . . . 8

2.3 State of the art of FDI for wind turbine systems . . . . . . . . . . . . . . . . 9
2.3.1 Rotor blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Rotor and drive train . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.3 Gear box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.4 Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Wind turbine physics 13
3.1 Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Wind physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 Aerodynamic equations . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.3 Mechanical equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.4 Electrical equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.5 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Linearization and simplification . . . . . . . . . . . . . . . . . . . . . . . . . . 23

vii



3.2.1 Aerodynamic equations . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 Mechanical equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.3 Electrical equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Block structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Case presentation: model parameters . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Simulink implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6 Sensors of the wind turbine system . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6.1 Measurement of rotor rotational frequency . . . . . . . . . . . . . . . . 30
3.6.2 Measurement of tower vibration accelerations . . . . . . . . . . . . . . 31
3.6.3 Simulations with standard measurement noise . . . . . . . . . . . . . . 32

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Two fault scenarios 35
4.1 Detection of an unknown pitch actuator gain . . . . . . . . . . . . . . . . . . 35

4.1.1 The wind turbine system with an unknown pitch actuator gain . . . . 35
4.1.2 Analysis of the closed-loop system . . . . . . . . . . . . . . . . . . . . 37

4.2 Detection of an unknown pitch actuator delay . . . . . . . . . . . . . . . . . . 40
4.2.1 The wind turbine system with an unknown pitch delay . . . . . . . . . 40
4.2.2 Analysis of the closed-loop system . . . . . . . . . . . . . . . . . . . . 41

4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 System identification methods 45
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Closed-loop spectral analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3 Experiment - system identification in closed-loop . . . . . . . . . . . . . . . . 47
5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Kalman filter methods 49
6.1 The discrete-time Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1.1 The wind turbine system . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1.2 The wind speed in an augmented state . . . . . . . . . . . . . . . . . . 51
6.1.3 The pitch actuator gain in an augmented state . . . . . . . . . . . . . 53

6.2 The Kalman filter as a least squares problem . . . . . . . . . . . . . . . . . . 58
6.2.1 A general covariance representation . . . . . . . . . . . . . . . . . . . 58
6.2.2 The least squares problem . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.3 The Kalman filter over a time window . . . . . . . . . . . . . . . . . . . . . . 61
6.3.1 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.3.2 Experimental issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.4 A nonlinear Kalman problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.4.1 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.4.2 Experimental issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7 Multiple-model estimation 73
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2 Hybrid systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.3 Interacting multiple-model estimator . . . . . . . . . . . . . . . . . . . . . . . 76



7.4 IMM estimation of an unknown pitch actuator gain . . . . . . . . . . . . . . . 78
7.4.1 Design of the model set . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.4.2 Experimental issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.5 IMM estimation of an unknown pitch actuator delay . . . . . . . . . . . . . . 85
7.5.1 Design of the model set . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.5.2 Experimental issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8 Conclusions and recommendations 93
8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.1.1 The simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.1.2 FDI using system identification . . . . . . . . . . . . . . . . . . . . . . 93
8.1.3 FDI based on the Kalman filter . . . . . . . . . . . . . . . . . . . . . . 94

8.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.2.1 Improving the simulation model: a nonlinear model? . . . . . . . . . . 95
8.2.2 Local linear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.2.3 Nonlinear Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.2.4 Controller reconfiguration . . . . . . . . . . . . . . . . . . . . . . . . . 95

A Linear state-space systems 97
A.1 The discrete-time LTV system . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.2 The discrete-time LTI system . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

B Horizontal axis wind turbine 99

C List of files 101
C.1 The HAWT simulation model and the associated data . . . . . . . . . . . . . 101
C.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
C.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102





List of notations and symbols

The mathematical notations and symbols that have been used in this thesis are listed below.

N the set of natural numbers (0,1,2,...)
N

+ the set of positive integers (1,2,...)
R the set of real numbers
R

n the set of real-valued n-dimensional vectors
R

n×m the set of real-valued n by m matrices
In the n by n identity matrix
0n×m the n by m matrix, with all elements equal to zero
S the discrete model set S

∈ belongs to
= equal
≈ approximately equal
≡ equivalent
min minimum
max maximum
arg argument
log 10 log
E[·] statistically expected value

Aij the (i, j) entry of the matrix A
AT the transpose of the matrix A
A−1 the inverse of the matrix A
A† the Moore-Penrose pseudo inverse of the matrix A

A1/2 the symmetric positive definite square root of the matrix A
‖A‖2 the 2-norm of the matrix A
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ẍ the second derivative of the variable x
x̄ the mean value of the variable x; used in this thesis to denote the

operating point value of a turbine system variable

xi



t continuous time t ∈ R

k discrete time k ∈ N

z z-transform parameter
∆(k) the unit pulse

A state transition matrix
B input to state transition matrix
C observation matrix
D direct feed-through matrix
x the state of a linear system
y the output of a linear system
u the input of a linear system
n system order, dimension of the state
� dimension of the input
m dimension of the output
w � (0, Q) zero-mean white process noise sequence with covariance matrix Q
v � (0, R) zero-mean white measurement noise sequence with covariance matrix R
P state error covariance matrix
K Kalman gain



List of abbreviations

ANN Artificial Neural Network
ECN Energy research Centre of the Netherlands
EWEA European Wind Energy Association
FDI Fault Detection and Identification
FNN Feedforward Neural Network
FTC Fault Tolerant Control
HAWT Horizontal Axis Wind Turbine
IMM Interacting Multiple-Model
LMS Least Mean Squares
LTI Linear Time Invariant
LTV Linear Time Variant
MIMO Multiple Input, Multiple Output
MM Multiple-Model
MOESP Multi-variable Output Error State sPace
NOVEM Nederlandse Onderneming Voor Energie en Milieu
ODS Operational Deflection Shape
PD Proportional Derivative
PI Proportional Integral
rpm rotations per minute
SISO Single Input, Single Output
SLDV Scanning Laser Doppler Vibrometer
SLS Separable Least Squares
VAF Variance Accounted For

xiii



List of abbreviations

0.4pt0.4pt

xiv



Chapter 1

Introduction

1.1 Background

Fault Detection and Identification (FDI) is a topic that becomes increasingly important in
industrial processes, due to growing demands on operational reliability, safety and product
quality. The general idea is to use a scheme based on measured process data to detect a fault
occurrence in a physical process, e.g. a component deterioration, to isolate the fault location
in the process and to identify the time characteristics of the fault.

To provide a framework for this thesis, an overview is given below of current trends in
offshore wind engineering and the problems involved in practical realization. More information
can be found in Hau (2000) and EWEA (1997). It will be shown that an FDI scheme allows
predictive maintenance to be introduced: a component can then be replaced before a system
breaks down, which saves money and increases the annual availability and energy yield.

Current trends in offshore wind engineering

The development of offshore wind energy has only just begun. Currently, the world’s largest
offshore wind farm of 17 MW can be found in Dronten, The Netherlands; however, it merely
consists of regular wind turbines with some additional protection against the marine environ-
ment, which stand in a shallow inland sea.

As explained in EWEA (1997), placing a wind farm in the open sea yields several benefits.
Under offshore conditions, there is a more suitable wind regime for wind turbine energy:
the average wind speed is higher, which is energetically more profitable, and there is less
turbulence because of the flat surface structure of the sea. Apart from the fish and the
fishermen, there are no local residents who complain about the noise and sight of a wind
farm. Since sound emission is less of a problem, higher tip speed ratios can be allowed,
which increases the energy yield. This extra energy yield is necessary to compensate for
the increasing costs: unfortunately, a wind turbine on an offshore location requires higher
foundation costs and has higher losses due to electrical transmission from land to shore. Also,
the costs for inspection and maintenance are expected to be much higher. While the costs for
foundation and transmission are an intrinsic property of the offshore location, a lot can be
gained by reducing the inspection and maintenance costs, which therefore is a key objective
for offshore development. If the turbine size increases, a lower amount of wind turbines is
required to produce the same amount of energy. This decreases the number of maintenance
points per megawatt. For successful application of offshore wind turbines, a very challenging
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goal is therefore to build larger wind turbines, which need less maintenance than current land
based turbines.

The reliability of a wind turbine can be increased by making the construction more robust.
However, since enlarging the current designs already leads to severe material costs, it is
certainly not desirable to make even heavier constructions. To make offshore wind turbines
feasible, a lighter construction must be designed that has a higher reliability than the current
generation of wind turbines. Lighter and stronger materials have to be developed to achieve
this ambitious goal; a large challenge for materials scientists. Another large step forward
can be made by control engineers: the design of better maintenance schemes for turbine
components can lead to cost reduction and higher availability of the turbine.

The importance of a better maintenance scheme

The main idea is to develop a scheme that monitors the condition of the turbine and its
components, which makes it possible to introduce a better maintenance strategy. As described
in Caselitz et al. (1994) and Barron (1996), there are three different schemes for component
maintenance:

1. Breakdown maintenance, better known as ”fix it when it breaks”,

2. preventive maintenance, which is based on the average component lifetime, and

3. predictive maintenance, which is based on the operating health of a component.

Nowadays, often preventive maintenance is applied, combined with breakdown mainte-
nance. A component is replaced after the average lifetime; unfortunately, this cannot reduce
the number of failures to zero, so in case a failure occurs, it is repaired as quickly as possible.
Especially in an offshore turbine, the number of failures must be as low as possible: if a
turbine has to be shut down due to a failure, this means that no energy is produced and a
maintenance crew has to be sent to repair the damage. The remote offshore location has the
result that maintenance costs for offshore sites are much higher than for sites on land. As
described in Barron (1996), the lifetime estimate of a component is always on the low side in
order to minimize the number of failures. Since individual components may last much longer,
this often leads to unnecessary component replacement, so that a lot of money is wasted.

It can be concluded that it is very profitable to monitor the condition of the turbine
components and introduce predictive maintenance. To achieve this, component deterioration
must be detected in a very early stage, so that measures can be taken to replace the damaged
component before a major failure occurs. A successful predictive maintenance scheme means
an increased availability of the plant, since the annual number of failures can be reduced,
and lower costs for maintenance and materials, since the average component lifetime can be
increased.

Fault detection and identification

The above analysis clearly demonstrates the importance of FDI methods in offshore wind
turbine systems, since an FDI scheme allows the measurement of component degradation, so
that predictive maintenance can be introduced. Though this reduces the annual number of
failures, it cannot reduce the number of failures to zero: certain faults have an immediate
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1.2 Problem statement

effect, e.g. a turbine blade failure caused by a stroke of lightning or a collision with a big bird.
The FDI scheme must therefore be extended with an Fault-Tolerant Control (FTC) scheme:
if a fast method is available to detect a fault occurrence and identify the cause, the turbine
can be switched to a safe operation mode to avoid further damage while a maintenance crew
is on its way. This increases the annual operation time and the annual energy yield, since
for certain failures it might be possible to keep the plant in operation; it then may run at a
lower energy yield, while currently the plant is shut down. More information on FTC can be
found in Patton (2000) and Blanke et al. (1997), applications can be found in e.g. Noura et
al. (2000) and Kanev & Verhaegen (2000).

Fault detection methods can be classified into two categories: model-based methods, which
are based on system modeling and model evaluation, and feature-based methods, where faults
are detected by analyzing certain features of the measurement signals. Section 2.2 describes
this classification in more detail. According to Notash & Moore (2002), a common strategy
for FDI is based on sensor redundancy: additional sensors are introduced, so that the correct
sensor output can be obtained with a majority-voting scheme, despite a single faulty sensor
output. A recent evolution is to introduce artificial sensors, based on both measurements
and process modeling. Since the systems behavior is different when a fault occurs, it can be
described with a different system model. A sufficiently accurate mathematical model of the
supervised process is needed to implement a model-based FDI scheme.

1.2 Problem statement

Considering the above analysis, the following problem statement can be defined:

Develop and test a linear wind turbine model for a Horizontal Axis Wind Turbine (HAWT)
that uses pitch-to-vane control, and use it as a simulation environment for model-based Fault
Detection and Identification (FDI) methods in the time domain. Analyze to what extent these
methods can be applied in an offshore wind turbine under operating conditions.

Wind measurements in practice are not very trustworthy since the wind flow is disturbed
by the rotor blades and there are large spatial variations in the rotor-swept area. Therefore,
an extra constraint is introduced: no measurement of the wind speed is to be included in the
FDI schemes, which means that the driving force on the wind turbine system is unknown.

A short description of a HAWT is given in appendix B. Note that the FDI methods
must be applied under operating conditions, so that the closed-loop wind turbine model must
be considered. Furthermore, no additional sensors and actuators are allowed: only existing
sensors and actuators in a real wind turbine system can be used.

1.3 Organization of the thesis

This thesis is organized as follows:

Chapter 2 gives a short introduction on fault detection and identification. Important
terminology is explained, and FDI methods are classified into several categories, which are
explained shortly. Furthermore, an overview is given of FDI methods that have successfully
been applied to HAWT systems up till now.
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Chapter 3 gives a short description of the physics of a HAWT using pitch-to-vane control.
Relevant physical equations are linearized in the vicinity of the most important operating
point, in which the wind turbine reaches full load operation. A block structure of a HAWT
system is defined, and a prototype of a future offshore wind turbine is described. A simulation
model of the wind turbine is then designed, and appropriate values of the measurement noise
in the system outputs are calculated, so that the wind turbine model can be used as a realistic
simulation environment for FDI methods.

Chapter 4 describes two FDI scenarios for a HAWT: the identification of an unknown
blade pitch actuator gain and an unknown pitch actuator delay. A fault is defined as a
deviation of these process parameters from their normal values. The effect of these faults
on the closed-loop system behavior is studied by deriving a state-space representation and
viewing the Bode plots of relevant closed-loop transfer functions.

The remainder of this thesis discusses model-based FDI schemes. Two method classes are
considered: the system identification approach (Isermann, 1997) and the observer-based ap-
proach (Patton & Chen, 1997).

Chapter 5 analyzes the system identification approach, that identifies a system model
from a batch of input/output data. A parameter estimation scheme is then used to compare
this system model description with the known fault-free system description, so that a process
parameter can be estimated.

Chapter 6 describes methods that directly estimate the unknown pitch actuator gain,
using the Kalman filter. Knowledge of the nominal system model is assumed, and a reference
model is run in parallel to the physical process, which uses the controlled system input to
estimate the system’s state variables and to reconstruct the system outputs. The unknown
variables, the wind speed and the pitch actuator gain, are included in an augmented system
state, so that they can be estimated by the discrete-time Kalman filter.

The Kalman filter is also implemented as a least-mean squares (LMS) problem; later on,
this problem is rewritten for a moving time window, both as a linear and a nonlinear LMS
scheme.

Chapter 7 describes the multiple-model estimation approach, a special class of observer-
based estimation. A bank of Kalman filters is designed, each based on a model description of
the process, either fault-free or faulty. In a recursive scheme, the probability that each model
is in effect is calculated. This yields weighting factors for the state estimates from the filter
bank, so that an overall state estimate can be calculated. The fault can then either be found
as a weighted combination of the faults associated with the model descriptions in the filter
bank, or be defined as the fault associated with the most likely model.

Chapter 8 presents the conclusions of this thesis, and gives recommendations for further
research.

Appendix C presents an overview of Matlab and Simulink files that are named throughout
this thesis. These files contain the HAWT simulation model, relevant data, functions and
algorithm implementations.
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Chapter 2

Fault detection and identification

Introduction

Fault detection and identification schemes in industrial processes are becoming increasingly
important, because of growing demands for higher product quality, safety and operational
reliability. As described in chapter 1, an FDI scheme for an offshore wind turbine system
allows a predictive maintenance scheme to be introduced, which saves money and increases
the annual energy yield.

As described in section 1.2, the aim of this thesis is to develop model-based FDI methods
for application in a wind turbine system under pre-defined operating conditions. As an
introduction, some useful terminology for the field of fault detection and identification is
explained. A short overview of the existing FDI methods is given, and a literature study is
presented on previous applications of FDI methods in wind turbine systems.

2.1 Terminology

In Isermann & Ballé (1997), some useful definitions are suggested for the field of supervision,
fault detection and diagnosis. They were discussed and reviewed at the SAFEPROCESS
2000 conference, and published in Isermann & Ballé (2000). A selection of these definitions
is presented below, as well as several classifications for faults.

2.1.1 States and signals

Faults and failures are two fundamental concepts in fault-tolerant design.

Fault: an unpermitted deviation of at least one characteristic property or parameter of the
system from acceptable/usual/standard condition.

Failure: a permanent interruption of a systems ability to perform a required function under
specified operating conditions.

A fault is a physical defect, imperfection or flaw that occurs within the system. This may
cause a failure: the non-performance of some action that is due or expected. It is important
to remember, that not all system faults lead to a system failure. The aim of fault-tolerant
design is, to avoid failures for a selected number of fault scenarios.
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According to Basseville & Nikiforov (1993) and Isermann (1997), three classifications of faults
can be made. These classifications are listed and explained below.

• location in the physical system: sensor, actuator and component faults. Consider
a physical process, represented as a discrete-time Linear Time Invariant (LTI) system,
such as described in appendix A.2. Neglecting the noise sequences, it is defined as:

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k)

with the state matrices A ∈ R
n×n, B ∈ R

n×m, C ∈ R
�×n and D ∈ R

�×m, the state
vector x ∈ R

n, the input vector u ∈ R
m and the output vector y ∈ R

l, and k ∈ N
+ the

time instant.

A sensor fault results in a faulty output vector y(k), as the fault appears in the state
matrices C and D. An actuator fault results in a faulty control action on the state and
output vector: the matrices B and D are affected. A component fault denotes a fault
in any system component, other than a sensor or actuator. A component fault may
change the dynamics of the physical process: it may result in a different A matrix.

• mathematical properties: multiplicative and additive faults. Again consider an LTI
system. An additive fault is a fault term which is added to the state vector x(k) or the
output vector y(k). In a physical sense, an additive fault appears as a sensor or actuator
offset. A multiplicative fault influences one variable in x(k) or y(k) as the product of a
fault term and another variable. In a physical sense, multiplicative faults can be used
to describe a sensor or actuator degradation. It can also be used to describe component
faults: parameter changes within the process.

• time behavior characteristics: abrupt, incipient and intermittent faults. As il-
lustrated in figure 2.1, abrupt faults have a step-like behavior: a fault term changes
abruptly from the nominal value to a faulty value. Incipient faults have a drift-like
behavior: the fault term gradually changes from the nominal value to a faulty value,
e.g. in a linear way. Intermittent faults have a temporary effect: the fault term changes
from the nominal value to a faulty value, and returns to the nominal value after a short
period of time.

τfτfτf

fff

ttt

abrupt incipient intermittent

Figure 2.1: Time-dependency of faults: an example of an abrupt fault, an incipient fault and an

intermittent fault. The fault in the feature f occurs at time t = τf .
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2.1.2 Functions

A key element in fault-tolerant design is a fault diagnosis scheme. Isermann & Ballé (2000)
provide definitions for important functions of such a scheme:

Fault detection: determination of faults present in a system and time of detection.

Fault isolation: determination of kind, location and time of detection of a fault; follows
fault detection.

Fault identification: determination of size and time-variant behavior of a fault; follows
fault isolation.

Fault diagnosis: determination of kind, size, location and time of a fault; follows fault
detection, and includes fault isolation and identification.

In section 2.2, a brief overview of fault detection and identification methods is given.

2.1.3 System properties

Isermann & Ballé (1997) describe several system properties, which are used to compare the
performance of fault-tolerant systems:

Reliability: ability of a system to perform a required function under stated conditions,
within a given scope, during a given period of time. Measured in mean time between
failures.

Safety: ability of a system not to cause danger to persons or equipment nor the environment.

Availability: probability that a system or equipment will operate satisfactorily and effec-
tively at any point in time.

2.2 Fault detection and identification methods

Fault detection and identification methods can be classified by the way process knowledge is
incorporated in the signal processing, into model-based methods and signal-based methods.
When a process is too complex to be modeled analytically and signal analysis doesn’t yield
an unambiguous diagnosis, a fault detection approach based on expert systems or artificial
intelligence can be used.

2.2.1 Model-based methods

A model-based method uses the system inputs u(k) and outputs y(k). According to Isermann
& Ballé (1997), there are three basic categories:

System identification and parameter estimation: using a system identification tech-
nique on input/output measurements, process parameters are estimated and compared
with a nominal parameter set. The difference, or residual, is used as a fault indicator.
Chapter 5 investigates this approach.
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State and output observer: an observer, often a Kalman filter, uses knowledge of the
nominal system model. A reference model is run in parallel to the observed process,
which uses the controlled system input to estimate the system’s state variables and
reconstruct the system outputs. The residual, defined as the difference between the real
and estimated output, can be used as a fault indicator. A clear overview is given in
Patton & Chen (1997). Methods based on the Kalman filter are analyzed in chapter 6.
A special class of observer-based approaches is the multiple-model estimation approach,
described in Rong Li (1996) and analyzed in chapter 7.

Residual generation: primary residuals are formed as the difference between the actual
plant outputs and those predicted by the model; these residuals are then subjected to
a linear transformation to obtain the desired fault-detection and isolation properties,
such as sensitivity to faults, reduced (or no) sensitivity to noise, etc. These methods
are not considered in this thesis; a short description is given in Gustafsson (2000), a
more thorough description and historical overview can be found in Gertler (1997).

Model-based techniques require a sufficiently accurate mathematical model of the supervised
process.

2.2.2 Signal-based methods

A signal-based (or feature-based) method for fault detection is based on analysis of the mea-
sured output signals y(k). Suitable features of the measured signals are used to evaluate
the operating conditions. These features can be in both time and frequency domain, some
examples are the signal mean, variance, skewness, kurtosis, crest factor or the power in a
certain frequency band.

Signal-based fault detection methods are particularly interesting for vibration detection.
Vibration spectra can be compared to find deviations in rotational frequencies, which may
correspond to particular instabilities. However, this thesis only considers model-based fault
detection schemes. Information about signal-based methods can be found in e.g. Isermann
(1997), Isermann & Ballé (1997) and Gustafsson (2000).

2.2.3 Expert system and artificial intelligence approaches

Sometimes a process is too complex to be modeled analytically and a regular signal analysis
approach doesn’t yield a reliable FDI scheme, e.g. certain fault combinations have differ-
ent effects on the system behavior. It is then possible to classify faulty behavior by using
qualitative process knowledge to evaluate relations between measured signals and the current
operating conditions. These methods are further divided into probabilistic methods, fuzzy
logic techniques and artificial neural network approaches; a short description of these methods
can be found in Isermann & Ballé (1997), a more detailed overview is given in Leonhardt &
Ayoubi (1997). More information on fuzzy techniques can be found in Frank (1990). These
methods are also outside the scope of this thesis.
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2.3 State of the art of FDI for wind turbine systems

This section gives an overview of FDI methods that have been applied successfully to the main
components of a HAWT. These and other components are shortly described in appendix B.
The aim of this literature study is to investigate whether model-based FDI schemes have been
used in the field of wind turbine engineering.

2.3.1 Rotor blades

Infrared thermography

Smith et al. (1993) state that infrared thermography can be used as an in-field technique
for condition monitoring of the wind turbine blades. When the blades experience dynamic
mechanical loads, the temperature increases to a certain equilibrium temperature. In an
experiment, strip specimens of glass reinforced polyester were subjected to cyclic loads; it
was demonstrated, that higher loads correspond to a higher equilibrium temperature and
that both stress concentrations and regions of damaged materials give rise to hot spots. It
was shown, that the sensitivity of thermal imaging is suitable for non-destructive examination
during fatigue testing. Smith et al. (1993) expect that for blades in situ, the wind loads provide
enough excitation to create effects that can be detected by thermal imaging.

Vibrational analysis

Ghoshal et al. (2000) test four different algorithms that use vibrational analysis for detecting
damage on wind turbine blades. For these experiments, two piezoceramic actuator patches
are bonded to the blade. The blade is excited, and the vibrations are measured with four
piezoceramic sensors or with a Scanning Laser Doppler Vibrometer (SLDV). Blade damage is
modeled by patching an additional weight on the blade, which causes a rotational instability.

Transmittance function monitoring: Schultz et al. (1999) introduced the transmittance
function monitoring technique for composite structures, which uses piezoceramic sensors and
actuators bonded to these structures. The transmittance function is defined as the ratio of
the response cross-spectral density between two sensors r and s and the auto spectral density
of a sensor s. It defines how vibration is transmitted between r and s as a function of the
frequency. The spectral densities have many peaks and valleys. They misalign when damage
occurs, which changes the transmittance function. Ghoshal et al. (2000) made this method
better suitable for practical application. The blade is excited with a piezoceramic actuator,
and the vibration responses are measured with an SLDV, therefore no additional sensors are
required. It was shown in an experiment that damage indication works fine, but that damage
location is not always correct. This might be solved by a smaller grid.

Operational deflection shapes: The Operational Deflection Shape (ODS) is the actual
shape of the blade structure when subjected to in-service regular dynamic loads. It is es-
tablished by measuring the three-dimensional motion at critical points on the system. This
method doesn’t require additional actuator and sensor patches, but a special setup is required
to measure the ODS. Ghoshal et al. (2000) use a chirp excitation from the SLDV to obtain
the complex vibration response at each measurement point of the blade. The real amplitudes
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are plotted at selected phase angles, yielding the ODS. In a healthy case, the ODS is sym-
metric. Once damage occurs, the ODS becomes asymmetric, a clear indication of damage.
The validity of this method was verified in an experiment.

Resonance comparison: Ghoshal et al. (2000) compare the response of a healthy and a
damaged blade. The piezoceramic actuator is excited by a sine input at a resonance frequency
of the blade. The response is measured with the piezoceramic sensors. When a blade is
damaged, its resonance frequency changes. Therefore, the resonance response of a damaged
blade will be lower than that of a healthy blade; this was verified in an experiment. Ghoshal
et al. (2000) consider this method to be the most hopeful method for practical application,
since it requires minimal historic data, has a very simple algorithm and can be used in real
time. A drawback is, that the method needs both additional sensors and actuators.

Wave Propagation: The wave propagation method uses the same instrumentation as the
resonance comparison method. The actuator is excited by an impulse signal instead of a sine
wave, and the responses are measured with the piezoceramic sensors. The damage could be
indicated in an experiment, but it turned out that the sensitivity is low if the damage is not
in the path between actuator and sensor.

2.3.2 Rotor and drive train

Caselitz et al. (1994) study the frequency spectrum of the electric power output of a wind
turbine to analyze structural oscillations and drive train vibrations. Order analysis was
applied to enhance spectral components that vary with the rotational frequency, and the
main peak frequencies were identified, e.g. rotor frequency, blade passing frequency (see
section 3.1.1) and blade eigenfrequencies. A lead strip was stuck to the blades to study rotor
imbalance, and the resulting spectrum was compared with the spectrum of the fault-free
blade. It was found, that the amplitude of the peak at rotor frequency increases linearly with
the added mass, while the harmonics are almost unchanged.

2.3.3 Gear box

Elhor et al. (1999) present a diagnosis system for on-line supervision of a wind turbine ma-
chine, based on an autoassociator neural network (ANN). A radial and axial accelerometer
were installed in the gear box. Data was recorded during normal operation at different wind
conditions and mechanical loads. The data is split in batches, of which the frequency spec-
tra are calculated. After feature extraction (choosing the frequencies of interest), this yields
spectra containing frequencies that correspond to the contributions of the main rotating com-
ponents. These spectra are then used to train a neural network: it adapts its internal weight
factors in order to memorize the training data samples presented as input, until the learning
error becomes smaller than a certain threshold. Thus, the network learns the normal behavior
of a wind turbine. Any deterioration of a mechanical component of the gear box changes the
spectrum: peaks can shift or resize, or new peaks can appear. Therefore, after the training
phase, it is possible to compare the network output and the real output on-line. Any deviation
can be interpreted as a machine failure.
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2.3.4 Generator

Extensive literature is available on fault diagnosis and condition monitoring of turbine gen-
erator systems. Some articles focus on detection of shorts in generator windings that might
cause vibrations and lead to mechanical damage of rotor elements. Up till now, these meth-
ods havent been applied to a wind turbine generator system; see section 3.1.4 for a brief
description of wind turbine generator systems.

Poljakov & Tsvetkov (1999) use thermoresistor measurements for early detection of cooling
system deterioration due to leakage or stator overheating in large turbine generators that use
water cooling. Since this method deals with generator powers in the order of hundreds of
MW, this method is of little relevance to wind turbine generators.

Kulkarni et al. (2000) use the so-called twin signal sensing technique for online detection
of incipient faults in field windings of synchronous turbine generator rotors. Two identical
pulses are applied to both ends of the winding through capacitors, in order to isolate the
high winding voltage from the detection circuits. The reflected pulses are symmetric for an
undamaged winding and show asymmetry if the winding is damaged. Therefore, the difference
between the reflected signals is further processed as it is a signature for the condition of the
winding. The method doesn’t require modifications to the generator under test, and on-line
experiments gave excellent results.

Megahed & Malik (2000) use a feedforward neural network (FNN) based digital differential
relay for fault detection and classification in the stator windings of synchronous generators.
Seven generator currents are used as input to two neural networks: one for the fault detection
module, which uses a three-neuron output layer to discriminate between normal state, internal
and external fault state, and one for the fault classifier module, which is activated in case of
an internal fault, and uses a three-neuron output layer to identify three internal phases as
faulty or healthy. After the training phase, an output close to one indicates a fault of the
associated type. Experiments showed that the designed relay works very well, with outputs
greater than 0.9 in case of an external fault while the other outputs are under 0.1. When an
internal phase is faulty, the fault classifier maps the corresponding output to a value > 0.95.

Darwish et al. (2001) use ANNs for an on-line fault diagnosis scheme for synchronous gen-
erator windings. Three different schemes are tested, the first one similar to that in Megahed
& Malik (2000). However, the third scheme proved to be superior in an on-line experiment,
both in sensitivity to internal fault detection and stability against external faults. It uses 7
neural networks: three for phase-to-ground faults, three for phase-to-phase faults and one for
symmetrical three-phase faults; an output close to one yields a fault of the associated type.
The networks have six inputs: three phase currents of both line side and neutral end. This
ANN has larger discrimination capabilities, since all the faulty phases as well as the sound
phases participate in decision making.
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2.4 Conclusions

FDI methods are classified into model-based and signal-based methods. They can be im-
plemented with or without the use of artificial intelligence. The object of this thesis is to
design a model-based FDI scheme for a HAWT, which can be used under normal operation
conditions.

A study of prior FDI research showed, that model-based FDI has not yet found its way to
application in the field of wind turbine engineering. A short description was given of existing
FDI schemes for monitoring the condition of various turbine components: rotor blades, drive
train, gear box and generator. Only signal-based methods were described in literature, as well
as methods based on artificial intelligence. Moreover, most of these methods use additional
sensors and actuators, or can only be applied under special measurement conditions. No
model-based fault detection scheme was found in literature, not to mention a fault tolerant
control scheme.

It can be concluded, that model-based fault detection and identification for wind turbine
systems is an open research field. A feasibility study of model-based FDI methods might yield
interesting new methods, which can be used to monitor the condition of the components of a
HAWT.
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Chapter 3

Wind turbine physics

Introduction

Consider an offshore HAWT system with 3 rotor blades that uses pitch-to-vane control; see
appendix B for a brief introduction. When the wind passes the rotor swept area, it exerts
a torque on the turbine blades. A part of the kinetic energy of the wind flow is therefore
converted into rotational energy of the turbine blades and the rotor shaft. The shaft drives
a generator, where the rotational energy is converted into electrical energy. The wind also
exerts an axial force on the tower head, which together with the torque results in tower
vibrations.

In this chapter, a HAWT simulation model is designed. Section 3.1 gives a description
of the physics of a HAWT, and presents the physical equations that describe its behavior.
Five topics are considered: wind signal properties, aerodynamics, mechanics, electronics and
control. In section 3.2, the relevant equations are linearized just above the operating point
(V̄w, λ̄, θ̄p), where the wind turbine reaches full load operation. In section 3.3, the wind
turbine system is divided into certain functional parts: it is described as a wind signal fed
into a cascade of 3 interacting modules, governed by a controller. Section 3.4 presents a case
study of a 6MW HAWT prototype: realistic values are given for the unknown parameters in
the physical equations. Using these parameters and the linear equations of section 3.2, the
wind turbine modules of section 3.3 can be implemented. This yields a realistic wind turbine
simulation model, which is presented in section 3.5. Finally, section 3.6 describes the sensors
in a real HAWT. Realistic measurement noise is calculated, to be used in the system outputs
of the simulation model.

3.1 Physics

Hau (2000) introduces the basic concepts of wind turbine physics and energy conversion.
Van Engelen et al. (2001a,b) give a more thorough description of a HAWT, focusing on the
aspects that are relevant for control purposes. This section considers five topics: wind signal
physics, aerodynamics, mechanics, electronics and control. The variables that describe the
turbine behavior are presented, and the relevant physical equations are presented.

13



Wind turbine physics

3.1.1 Wind physics

symbol [unit ] description
Vw(t) [m/s] rotor-effective wind speed
Ωr [rad/s] rotor rotational frequency
H [m] altitude, measured from earth’s surface
V̄H [m/s] wind speed at altitude H

H∗ [m] altitude, where the wind speed is undisturbed by terrain roughness
V ∗ [m/s] the undisturbed wind speed at altitude H∗

αws [−] wind shear exponent

In practice, it is never possible to know the exact wind disturbance on the wind turbine. The
wind can be described as a wind field, with a different speed at every location in the rotor
swept area, and at every time instant. The spatial variations in the wind field are mainly
caused by three effects:

Turbulence: According to Hau (2000), wind turbulence consists of short-term fluctuations
of the wind speed. The magnitude of the turbulence is approximately proportional to
the wind speed; its effect can be seen as a stochastic wind-speed dependent value which
is added to the mean wind speed. It has both periodic and non-periodic components,
as described in Van Engelen et al. (2001b).

Wind shear: The mean wind speed increases with altitude. Let V ∗ be the undisturbed
mean wind speed at a high altitude H∗, e.g. 1km. The wind flow is affected by the
friction against the surface of the earth, so that the wind speed is slowed down from the
undisturbed value to zero just above ground. In an engineering approach, an empirical
wind shear exponent αws is specified for each terrain type. A rough surface has a higher
αws than a smooth terrain, see Hau (2000) for some typical values. The mean wind
speed at a certain altitude H can then be calculated using

V̄H = V ∗ ·
(

H

H∗

)αws

(3.1)

Tower interference: Hau (2000) describes that when the wind flows around the tower, the
internal friction of the flowing medium and the surface friction of the tower body cause
an area of disturbed wind flow behind the body, the so-called flow wake area or tower
shadow. There is a similar but smaller effect in front of the tower: the tower dam. Since
the wind flow has to bend around the tower, the wind speed in front of the tower is a
little lower than elsewhere in the rotor swept area. Once every rotation, a blade passes
this area with lower wind speed.

The rotating blades sample the wind field as they rotate through the rotor swept area,
so that only a small part of the wind field influences the wind turbine system. Measuring
the wind speed at one location in the rotor swept area doesn’t contain all information that is
needed to account for the wind disturbance; moreover, the measured wind flow is disturbed
by the rotating blades.

To model the influence of the wind field on the rotor, a one-point wind input signal is
used that induces an aerodynamic torque Ta and axial force Fa on the wind turbine system,
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comparable with the torque and force that a real wind turbine experiences in a wind field.
This one-point wind signal is called the rotor-effective wind speed, described in Van Engelen
et al. (2001b) as the sum of a mean value and a certain variation. The variation is obtained
by a spatial integration over the rotor swept area of the effects of turbulence, the tower
interference and the wind shear.

The disturbance caused by tower interference and wind shear depends on the position
of the blade. Because of the turning of the rotor, the HAWT experiences disturbance loads
with a frequency equal to the ’blade passage frequency’ or its multiples. In a first order
approximation, these loads can be seen as cyclic loads. For a HAWT with three rotor blades,
the blade passage frequency is equal to three times the rotor rotational frequency Ωr. It is
denoted as ’3p’, where p represents the rotor frequency in rotations per minute (rpm).

The sampling of the turbulence field by the rotating blades has the effect that low-frequent
energy in the wind spectrum is shifted to multiples of the blade passage frequency in the
disturbance spectrum; hence, the rotor-effective wind speed has a higher spectral energy
around frequencies ’3p’, ’6p’, etc. The time characteristics of this so-called rotor effective
turbulence are obtained by an inverse Fourier transform of the spectrum, where an uniformly
distributed random phase angle between 0 and 2π is applied for every frequency point. This
realization is then added to the periodic disturbance that is caused by wind shear and tower
interference, which yields the rotor-effective wind speed. In Van Engelen et al. (2001b), the
design procedure of this wind speed is described in more detail.

A rotor-effective wind signal Vw(t) was developed by ECN, to be used as the wind input
signal for the simulation model designed in this thesis; see wind1p2.mat. A uniform wind
direction is assumed, therefore the yawing system (see appendix B) for turning the rotor into
the wind direction is omitted in this thesis.

3.1.2 Aerodynamic equations

symbol [unit ] description
Cp [−] power coefficient
Ct [−] thrust coefficient
Ta [Nm] aerodynamic torque on rotor
Fa [N ] axial force on rotor
Paero [W ] aerodynamic power
Rb [m] rotor blade radius
ẋnd [m/s] nodding speed of the tower head
λ [−] tip speed ratio
ρ [kg/m3] air density
Ωr [rad/s] rotor rotational frequency
θp [rad] physical pitch angle
θd
p [rad] pitch angle with a delay

p1, p2 − parameters of the pitch delay
τiDI [s] integral time constant of lead-lag filter
τdDI

[s] differential time constant of lead-lag filter

The wind disturbance results in tower vibrations that are described in the nodding-naying
reference frame, see figure B.2. The nodding direction is opposite to the wind direction, the

15



Wind turbine physics

naying direction is perpendicular to the nodding direction and parallel to the earth’s surface.
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Neglecting several details in geometry and aerodynamics, Van Engelen et al. (2001a,b)
describe the aerodynamic torque Ta and axial force Fa that are exerted by the wind on the
rotor as:

Ta =
Cp(θp, λ)

λ
· 1
2
ρπR3

b · (Vw − ẋnd)2 (3.2)

Fa = Ct(θp, λ) · 1
2
ρπR2

b · (Vw − ẋnd)2 (3.3)

with the tip-speed ratio λ defined as the ratio of the blade tip speed and the effective wind
speed, which is the wind speed minus the naying vibration speed ẋnd:

λ =
Ωr · Rb

(Vw − ẋnd)
(3.4)

The aerodynamic power Paero can be defined as

Paero = Ta · Ωr (3.5)

A common way to control the electrical power output of a wind turbine is by adjusting
the pitch angle of the rotor blades. This thesis considers a pitch-to-vane control strategy; see
section 3.1.5 for an explanation. To model the aerodynamic effect of the blade pitch actuator
on the turbine blades, two effects play an important role: dynamic inflow and pitch delay.

Dynamic inflow is the 3-dimensional effect of the rotor wake on the unsteady aerodynamics
of the rotor; a description can be found in Krothapalli et al. (1999). To model the dynamic
inflow effect of pitching, the controlled system input θp is led through first-order lead-lag
filters in order to account for the dynamic influence on the aerodynamic torque Ta and axial
force Fa.

For torque variations ∆Ta, the following transfer function applies:

∆Ta =
∂Ta

∂θp
∆θTa

p,eff

where ∆θTa
p,eff is defined as

∆θTa
p,eff =

τTa
dDI

s + 1
τiDI s + 1

Similarly, for variations in the axial force Fa, the following holds:

∆Fa =
∂Fa

∂θp
∆θFa

p,eff

where ∆θFa
p,eff is defined as

∆θFa
p,eff =

τFa
dDI

s + 1
τiDI s + 1

Up till now, this dynamic inflow effect is not included in the simulation model.

The second dynamic effect in pitching concerns the pitch servo mechanism behavior. This
can be modeled accurately enough by a straightforward delay. This delay can be modeled
with a second order Padé approximation (3.6), a lead-lag filter with two zeros and two poles.
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θd
p

θp
=

(s − (p1 + j · p2)) · (s − (p1 − j · p2))
(s − (−p1 + j · p2)) · (s − (−p1 − j · p2))

(3.6)

A Padé approximation is useful to model time delay effects such as transport and com-
putation delays within the context of continuous-time systems. The Laplace transform of a
time delay of T seconds is e−sT . This exponential transfer function is approximated by a
rational transfer function using the Padé approximation formulas, as described in Golub &
Loan (1989).

3.1.3 Mechanical equations

symbol [unit ] description
xnd [m] nodding displacement of tower head
xny [m] naying displacement of tower head
Ωr [rad/s] rotor rotational frequency
Ωa

r [rad/s] rotor rotational frequency used in aerodynamic conversion
Ωg [rad/s] generator rotational frequency, slow shaft equivalent
igb [−] gear ratio
Jr [kgm2] rotor moment of inertia
Jg [kgm2] generator moment of inertia
γ [rad] shaft distortion
θtilt [rad] tilt angle between Fa and ẍnd

Fhydr [N ] hydrodynamic load (tower top equivalent)
Lt [m] tower height
Tl [Nm] loss torque between rotor and gear box
Tnac [Nm] sideward tower bending torque
Te [Nm] generator torque (slow shaft equivalent)
cd [Nm/rad] torsional stiffness constant, 1st distortion mode
kd [Nm/(rad/s)] torsional damping constant, 1st distortion mode
ct [N/m] tower stiffness constant, 1st bending mode
kt [N/(m/s)] damping constant, 1st tower bending mode
mt [kg] tower top equivalent mass of the 1st order bending mode

Van Engelen et al. (2001a,b) describe the relevant mechanical equations in a wind turbine
system. In order to keep them orderly, slow shaft equivalent variables are used to describe
the generator behavior. These are the equivalent values on the slow shaft, in front of the gear
box, as described in appendix B. The differential equations that describe the tower bending
and drive train dynamics are shown in (3.7)-(3.10).
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ẍnd = − kt

mt
ẋnd − ct

mt
xnd +

Fa

mt
cos θtilt (3.7)

ẍny = − kt

mt
ẋny − ct

mt
xny +

3
2mt

Tnac

Lt
+

Fhydr

mt
(3.8)

γ̈ = −kd(Jr + Jg)
Jr · Jg

γ̇ − cd(Jr + Jg)
Jr · Jg

γ +
Ta − Tl

Jr
+

Te

Jg
(3.9)

Ω̇r = −kd

Jr
γ̇ − cd

Jr
γ +

Ta − Tl

Jr
(3.10)

In this thesis, the 1st distortion mode of the drive train (with cd, kd) and the 1st order
bending mode of the tower (with ct, kt) are considered. The shaft distortion speed γ̇ is defined
as

γ̇ = Ωr − Ωg (3.11)

Te is the slow shaft equivalent generator torque. Tnac is the sideward tower bending torque,
exerted by the drive train on the nacelle at hub height Lt:

Tnac =
igb ± 1

igb
JgΩ̇r + Te. (3.12)

Here, the ’±’ is a ’+’ for positive naying speed, and a ’−’ for negative naying speed. At a
constant rotor speed, Ω̇r = 0, so (3.12) yields Tnac = Te.

The naying speed introduces an extra rotational frequency term Ωny, to be added to Ωr

everywhere in the system, except in the aerodynamic conversion (3.4), since its influence can
be neglected there. From here on, the rotational frequency used in aerodynamics is denoted
Ωa

r . The rotor rotational frequency Ωr will be described as

Ωr = Ωa
r +

ẋny

Lt
(3.13)

This is a linear approximation for small vibration amplitudes, using φ ≈ tan φ = xny/Lt.

Fhydr is the tower top equivalent hydrodynamic load. A detailed expression is given in
Van Engelen et al. (2001b). This load is included in the simulation model, but set to zero for
now. Effectively, an onshore wind turbine is simulated.

3.1.4 Electrical equations

symbol [unit ] description
Pe [W ] electrical power
Pnom [W ] nominal electrical power
Te [Nm] generator torque (slow shaft equivalent)
T ref

e [Nm] reference value for generator torque
τg [s] time constant of (T ref

e , Te) servo system
Kopt [-] constant for calculating T ref

e in partial load
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The electrical system of a HAWT consists of the generator, which converts the mechanical
power into electrical power, and the connection to the grid.

There are two basic generator types, as described in Hau (2000). In an asynchronous
(induction) generator, an alternating current is produced in the rotor coils, which rotate
through the magnetic field of electromagnetic stators. In a synchronous radiator, a rotating
electromagnet is used to induce an alternating current in the stator coils.

Two methods are available to couple the generator output to the grid. Direct grid con-
nection means, that the generator is connected directly to the alternating current grid. Often
this is not possible; for instance, if Ωg doesn’t have a constant value, an alternating current is
generated with varying frequency, while the grid requires a constant frequency. Indirect grid
connection means, that the generator output passes through a series of electrical devices that
adjust the current to match the grid frequency.

From here on, these electrical properties are neglected: the generator type and the net
coupling are outside the scope of this thesis. No energy losses in the electric system are
considered, so the electrical power Pe is defined as:

Pe = Te · Ωg (3.14)

A simple model will be used to describe the wind turbine generator. A reference value T ref
e

that depends on Ωr is used as input to a linear filter to yield the generator torque Te:

Te(s) =
1

τgs + 1
T ref

e (s) (3.15)

In figure 3.1, the reference value T ref
e of the generator torque is shown as a function of

the generator rotational frequency Ωg. Below and above the operating point, T ref
e is defined

in a different way:

T ref
e =

{
Kopt · Ω2

g for Ωg < Ω̄g; Partial load
Pnom
Ωg

for Ωg ≥ Ω̄g; Full load (3.16)

Since the partial load and full load characteristics in figure 3.1 intersect in the operating
point, the value of Kopt is equal to Pnom

Ω̄3
g

.
When the generator rotational frequency Ωg increases, full load is reached at the point of

operation (V̄w, λ̄, θ̄p); from here on, ā denotes the operating point value of the parameter or
variable a. For higher values of Ωg, the power Pe is kept at the constant level Pnom. According
to (3.14), a constant power is obtained if the reference value T ref

e is taken proportional to Ω−1
g .

The actual operating point is chosen just above the nominal operating point, so the generator
behavior is modeled in the full load regime; see figure 3.1. This results in a small shift in
the turbine parameters (see section 3.4), with no relevant effect on the turbine dynamics.
Therefore, this shift will be neglected in this thesis.

3.1.5 Controller

A common way to control the electrical power output of a HAWT is by adjusting the pitch
angle of the rotor blades. The pitch angle is defined as the angle between the shape axis and
the direction of the wind speed. Hau (2000) describes two general approaches for pitch control.
Consider an undesired increase in output power. In pitch-to-vane control, the pitch angle is
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Figure 3.1: Generator characteristics for partial and full load operation.

decreased in order to reduce aerodynamic power capture of the blades. When pitch-to-stall
control is applied, the blade pitch angle is increased up to the point where the flow separates
at the rotor blades’ surface, which creates a stall effect that limits the power capture.

In this thesis, only pitch-to-vane control is considered for control of the power output. A
Proportional Derivative (PD) controller is used to control θ̇p (which has a Laplace transform
of sθp), in order to keep the rotor rotational frequency Ωr close to a desired level Ωref

r . The
controller has the following transfer function:

sθp

Ωr
= KPD(1 + τPDs) (3.17)

This is equivalent with a Proportional Integrating (PI) controller on θp:

θp

Ωr
= KPD(

1
s

+ τPD) (3.18)

An extra control option is control of Te to reduce the naying vibrations ẋny; these vibra-
tions are largely caused by Tnac, the reaction torque of Te on the tower head. This control
loop was not implemented in this thesis. The primary control loop is visualized in Figure 3.2.
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−

+Ωref
r

Ωr

θp

Vw

Turbine
system

Wind

Controller

Figure 3.2: The power control loop for the wind turbine system: in the full load regime, the rotor

rotational frequency Ωr is to be kept at a constant level Ωref
r by a PI controller on θp.
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3.2 Linearization and simplification

In order to fit the described physics in a model representation, it is necessary to simplify a
few of the physical equations that are described in section 3.1. The physics describing the
aerodynamics, mechanics and electronics will be linearized just above the operating point
(V̄w, λ̄, θ̄p). The variables and parameters are the same as used in section 3.1; new variables
and parameters are specified in this section. Note that the value of a variable or parameter
a in the operating point is denoted as ā.

3.2.1 Aerodynamic equations

symbol [unit ] description
ρ [kg/m3] air density
∆Ta [Nm] Ta-T̄a

∆Fa [N ] Fa-F̄a

∆Ωa
r [rad/s] Ωa

r -Ω̄
a
r

∆Vw [m/s] Vw-V̄w

∆θp [rad] θp − θ̄p

According to Van Engelen et al. (2001b), the aerodynamic conversion equations for aerody-
namic torque Ta (3.2) and axial force Fa (3.3) are determined by 4 variables: the pitch angle
θp, wind speed Vw, tower nodding speed ẋnd and the rotor rotational frequency Ωr (via tip
speed ratio λ). These equations are linearized as a superposition of 4 products, each con-
sisting of a partial derivative in the operating point (V̄w, λ̄, θ̄p) for the variation of one of
the variables described above. This results in the following linearization of the aerodynamic
torque Ta:

∂Ta = (Ta)′θp
∂θp + (Ta)′Ωr

∂Ωr + (Ta)′Vw
∂Vw + (Ta)′ẋnd

∂ẋnd

with:

(Ta)′θp
=

∂Ta

∂θp

∣∣∣
θ̄p,λ̄,V̄w

=
∂Cq

∂θp

∣∣∣
θ̄p,λ̄,V̄w

· 1
2ρπR3

b · V̄ 2
w

(Ta)′Ωr
=

∂Ta

∂Ωr

∣∣∣
θ̄p,λ̄,V̄w

=
∂Cq

∂λ

∣∣∣
θ̄p,λ̄,V̄w

· 1
2ρπR4

b · V̄w

(Ta)′Vw
=

∂Ta

∂Vw

∣∣∣
θ̄p,λ̄,V̄w

= −∂Cq

∂λ

∣∣∣
θ̄p,λ̄,V̄w

· λ̄ · 1
2ρπR3

b · V̄w + Cq(θ̄p, λ̄) · 1
2ρπR3

b · 2V̄w

(Ta)′ẋnd
=

∂Ta

∂ẋnd

∣∣∣
θ̄p,λ̄,V̄w

= −(Ta)′Vw

For the axial force Fa, this yields:

∂Fa = (Fa)′θp
∂θp + (Fa)′Ωr

∂Ωr + (Fa)′Vw
∂Vw + (Fa)′ẋnd

∂ẋnd
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with:

(Fa)′θp
=

∂Fa

∂θp

∣∣∣
θ̄p,λ̄,V̄w

=
∂Ct

∂θp

∣∣∣
θ̄p,λ̄,V̄w

· 1
2ρπR2

b · V̄ 2
w

(Fa)′Ωr
=

∂Fa

∂Ωr

∣∣∣
θ̄p,λ̄,V̄w

=
∂Ct

∂λ

∣∣∣
θ̄p,λ̄,V̄w

· 1
2ρπR3

b · V̄w

(Fa)′Vw
=

∂Fa

∂Vw

∣∣∣
θ̄p,λ̄,V̄w

= −∂Ct

∂λ

∣∣∣
θ̄p,λ̄,V̄w

· λ̄ · 1
2ρπR2

b · V̄w + Ct(θ̄p, λ̄) · 1
2ρπR2

b · 2V̄w

(Fa)′ẋnd
=

∂Fa

∂ẋnd

∣∣∣
θ̄p,λ̄,V̄w

= −(Fa)′Vw

This yields the following linearizations (3.19)-(3.19) around the operating point (V̄w, λ̄, θ̄p).

∂Ta = (Ta)′θp
∂θp + (Ta)′Ωr

∂Ωr + (Ta)′Vw
(∂Vw − ∂ẋnd) (3.19)

∂Fa = (Fa)′θp
∂θp + (Fa)′Ωr

∂Ωr + (Fa)′Vw
(∂Vw − ∂ẋnd) (3.20)

Based on (3.13), (3.19) and (3.20), the wind turbine model will be implemented with the
variables defined as variations around the operating point (V̄w, λ̄, θ̄p):

∆Ta = (Ta)′θp
∆θp + (Ta)′Ωa

r
∆Ωa

r + (Ta)′Vw
(∆Vw − ẋnd) (3.21)

∆Fa = (Fa)′θp
∆θp + (Fa)′Ωa

r
∆Ωa

r + (Fa)′Vw
(∆Vw − ẋnd) (3.22)

3.2.2 Mechanical equations

symbol [unit ] description
∆Te [Nm] Te-T̄e

∆Tnac [Nm] Te-T̄nac

∆Fhydr [N ] Fhydr-F̄hydr

∆Ωr [rad/s] Ωr-Ω̄r

∆Ωg [rad/s] Ωg-Ω̄g

In analogy with the aerodynamic equations, the turbine mechanical equations (3.7)- (3.12)
will be linearized just above the operating point (V̄w, λ̄, θ̄p), and the variables will be defined
as variations around this operating point. Several approximations are made:

• cos(θtilt) = 1, since θtilt is small;

• Tl = 0;

• igb±1
igb

= 1, since typically, the gear ratio igb ≈ 20.

24



3.2 Linearization and simplification

This yields the following mechanical equations:

ẍnd = − kt

mt
ẋnd − ct

mt
xnd +

∆Fa

mt
(3.23)

ẍny = − kt

mt
ẋny − ct

mt
xny +

3
2mt

∆Tnac

Lt
+

∆Fhydr

mt
(3.24)

γ̈ = −kd(Jr + Jg)
Jr · Jg

γ̇ − cd(Jr + Jg)
Jr · Jg

γ +
∆Ta

Jr
+

∆Te

Jg
(3.25)

∆Ω̇r = −kd

Jr
γ̇ − cd

Jr
γ +

∆Ta

Jr
(3.26)

γ̇ = ∆Ωr − ∆Ωg (3.27)

∆Tnac = Jg · ∆Ω̇r + ∆Te. (3.28)

∆Ωr = ∆Ωa
r +

ẋny

Lt
(3.29)

The hydrodynamic load ∆Fhydr is included in the model setup, but in the remainder of
this thesis, its value is set to zero.

3.2.3 Electrical equations

symbol [unit ] description
∆T ref

e [Nm] T ref
e -T̄ ref

e

The generator behavior just above the operating point (V̄w, λ̄, θ̄p) can be found by linearizing
the reference value T ref

e of the generator torque Te (3.16) in full load operation:

∂T ref
e =

∂T ref
e

∂Ωg

∣∣∣
Ω̄g

· ∂Ωg =
∂Pnom

∂Ωg

∣∣∣
Ω̄g

· ∂Ωg (3.30)

Since Pnom is a constant, this yields:

∆T ref
e = −Pnom

Ω̄2
g

· ∆Ωg (3.31)

In a real wind HAWT, the electrical power Pe is a measured output. However, if losses in
the electrical system are neglected, Pe can be calculated directly from the measurements of
the rotational frequency Ωg by linearizing (3.14), which yields:

∆Pe = ∆Te · Ω̄g + T̄e · ∆Ωg (3.32)
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3.3 Block structure

In the previous sections, the physics of a wind turbine system was described, simplified and
linearized. In this section, a general system model structure for a HAWT is presented, in
analogy with Molenaar (2000). In this model representation, the wind is modeled as an input
signal that is fed into a cascade of 3 modules: the aerodynamic, mechanical and electrical
module. These module blocks are governed by a 4th module: the controller. The linearized
physics can be implemented into this block structure. Figure 3.3 shows the modules described
by Molenaar (2000), with the input/output relations between these modules.

Aerodynamic Mechanical Electrical

Wind turbine

Controller

∆Vw

∆θp

∆Ta, ∆Fa

ẋnd, ∆Ωa
r

∆Ωr

ẍnd, ẍny

∆Ωg

∆Te

∆Ωref
r = 0

Figure 3.3: HAWT block structure in analogy with Molenaar (2000): the wind turbine is modeled

as a cascade of three modules, with the wind speed ∆Vw as an unknown disturbance input. A PI

controller is used to control the output ∆Ωr: the pitch angle ∆θp is adjusted in order to compensate

for variations in ∆Ωr.

The dotted block represents the system boundary. Arrows between the modules are within
this block; these are internal system variables. The arrows that cross the system boundary
represent the input/output variables of the wind turbine system:

Unknown input: ∆Vw

Input by controller: ∆θp

Controlled output: ∆Ωr

Other measured outputs: ẍnd, ẍny

The PI controller (3.18) is implemented to compensate for variations in ∆Ωr, by adjusting
the pitch angle ∆θp.

3.4 Case presentation: model parameters

The wind turbine simulation model is designed to represent a prototype of a 6 MW wind
turbine. Wind turbines of this size are a topic of current research, as they might be realized
offshore in the near future. This section presents realistic values for the unknown parameters
in the physical equations and linearizations in the previous sections, as designed by ECN.
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3.4 Case presentation: model parameters

Tower and drive train properties:

symbol [unit ] description
mt [kg] 4.9 · 108

Lt [m] 95
Rb [m] 64.5
ct [N/m] 2.0 · 106

kt [N/(m/s)] 1.0 · 103

cd [Nm/rad] 3.3 · 108

kd [Nm/(rad/s)] 3.1 · 106

Jr [kgm2] 2.6 · 107

Jg [kgm2] 2.9 · 106

Operating point values:

symbol [unit ] description
ρ [kg/m3] 1.125
Pnom [W ] 6 · 106

Fhydr [N ] 0, for now
F̄a [N ] 5.54 · 105

T̄a [Nm] 5.346 · 106

T̄e [Nm] 5.346 · 106

Ω̄r [rad/s] 1.162
Ω̄g [rad/s] 1.162
V̄w [m/s] 14.53
x̄nd [m/s] 0
θ̄p [rad] 0.136
∂Cq

∂θp

∣∣∣
θ̄p,λ̄,V̄w

[1/rad] −0.290

∂Cq

∂λ

∣∣∣
θ̄p,λ̄,V̄w

[−] −3.74 · 10−3

Cq(θ̄p, λ̄) [−] 4.9 · 10−2

∂Ct
∂θp

∣∣∣
θ̄p,λ̄,V̄w

[1/rad] −2.1142

∂Ct
∂λ

∣∣∣
θ̄p,λ̄,V̄w

[−] −1.73 · 10−3

Ct(θ̄p, λ̄) [−] 0.325

Delay implementations and controller parameters:

symbol [unit ] description
τg [s] 0.1
p1 [−] 15
p2 [−] 8.660254
KPD [−] −4.02508 · 10−2

τPD [s] 14.254
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Table 3.1: Input and output signals of the wind turbine simulation model.

Inputs and Outputs symbol [unit ] description Simulink variable
disturbance input ∆Vw [rad/s] Vw-V w deltaVW

controlled input ∆θp [rad] θp-θp deltaTH
measured output ẍnd [m/s2] ẍnd ddxnd
measured output ẍny [m/s2] ẍny ddxny
controlled output ∆Ωr [rad/s] Ωr-Ωr deltaWR

3.5 Simulink implementation

Using the linearized physics of section 3.2 and the model parameters of section 3.4, a linear
HAWT system model was implemented in Simulink, see the model file versie2.mdl. Table 3.1
shows the input and output variables of the turbine model. The constants and parameters
presented in section 3.4 are stored in the file constants.m.
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Figure 3.4: Simulation results - a realistic wind speed Vw is used as an input to the turbine system.

The resulting pitch angle θp and the rotor rotational frequency Ωr are shown. The dotted lines are

the operating point values V̄w, θ̄p and Ω̄r, respectively. No measurement noise in the system outputs.

Figure 3.4 shows the closed-loop simulation results of the wind turbine model: a plot of
the wind speed Vw (disturbance input), the pitch angle θp (controlled input) and the rotor
rotational frequency Ωr (controlled output). The operating point values are represented by
the dotted lines.

The behavior can roughly be explained as follows. If the wind speed increases, the aerody-
namic torque Ta on the rotor blades increases, so that Ωr increases. The control objective is
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3.5 Simulink implementation

to to keep Ωr constant: an increase of Ωr therefore leads to an increase of the pitch angle θp.
As a result, the turbine blades experience a smaller aerodynamic torque Ta, so that the rotor
rotational frequency Ωr decreases to the desired level. This results in a realistic variation of
Ωr of ±10% around the desired value Ω̄r.

Figure 3.5 shows a plot of the nodding acceleration ẍnd and the naying acceleration ẍny

during the first 40 seconds of the simulation shown in figure 3.4. The low amplitude of
the naying vibrations indicates that they are only weakly excited. A reason is, that the
hydrodynamic load Fhydr is taken zero in the simulations.
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Figure 3.5: Simulation results - For the first 40 seconds of the simulation shown in figure 3.4, the

nodding acceleration ẍnd and naying acceleration ẍny are shown. Note the difference in amplitude:

the naying vibrations are much smaller, since they are only weakly excited. Note that the nodding

and naying vibrations have the same eigenfrequencies, since the tower stiffness and elasticity is equal

in both nodding and naying direction. No measurement noise in the system outputs.

The continuous-time state matrices of the wind turbine system model have been found
with Matlab’s linmod command. These state matrices describe the wind turbine system as a
continuous LTI system of order 10. The system was found to be stable, which is logical from
a physical point of view: an unstable system could produce an infinite amount of energy.
The balanced state-space realization can be calculated, which balances the values of the
state matrix elements and thus decreases the numerical errors in calculations. This balanced
realization can then be discretized with a sample time of 0.1 seconds, yielding a realistic
discrete-time LTI system representation of the HAWT. In the remainder of this thesis, the
discrete-time state matrices will be used to simulate the wind turbine in Matlab, together
with a discretized version of the PI controller.
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3.6 Sensors of the wind turbine system

In this section, typical sensors are described which are used to measure the outputs in a real
HAWT. Based on these sensors, realistic values are calculated of the amount of measurement
noise in the outputs of the simulation model presented in section 3.5. Zero-mean white
measurement noise is assumed.

3.6.1 Measurement of rotor rotational frequency

In a real HAWT, the generator rotational frequency Ωfse
g is measured on the fast shaft, hence

the superscript fse for fast shaft equivalent. If Ωfse
g is divided by the gear ratio igb, the slow

shaft equivalent generator rotational frequency Ωsse
g is obtained. In this thesis, the superscript

sse is removed: Ωsse
g is denoted as Ωg.

The measured signal Ωg is processed to remove 3p disturbance contributions (caused by
turbulence, tower passage and wind shear effects, see section 3.1) and contributions of the drive
train vibrations. A reconstruction Ω̂r of the low frequency behavior of the rotor rotational
frequency Ωr is thus obtained, which is used for turbine control. The only difference between
the generator rotational frequency Ωg and the rotor rotational frequency Ωr is caused by drive
train vibrations, which manifest itself in Ωg: the generator oscillates around the rotor shaft,
because of the finite stiffness of the shaft. Since in a real wind turbine a good reconstruction
of Ωr is used for control, it is a logical choice to use the signal Ωr directly as the controlled
output of the turbine model, as has been implemented in the simulation model in section 3.5.

The generator rotational frequency Ωg is measured with a position encoder. A thorough
calculation of the measurement noise is presented in Van Engelen et al. (2001b); relevant
equations are shown below. Since the encoder creates N pulses per rotation, the position is
measured with a resolution of

Rφg =
2π

N
rad (3.33)

The standard deviation σεq
φm

g

of the position measurement is equal to

σεq
φm

g

=
√

1/12 · Rφg =
√

1/3
π

N
rad (3.34)

Ωg is measured by numerical differentiation of the position measurement over a sample period
∆T :

Ωg(k∆T ) =
φm

g (k∆T ) − φm
g ((k − 1)∆T )

∆T
(3.35)

The measurement noise in Ωg is obtained from numerical differentiation of the measurement
error εq

φm
g

:

εΩm
g

(k∆T ) =
εq
φm

g
(k∆T ) − εq

φm
g

((k − 1)∆T )

∆T
(3.36)

This yields, that the measurement Ωm
g of the generator rotational frequency Ωg has a standard

deviation σεq
Ωm

g

equal to

σεq
Ωm

g

=
√

2 ·
σεq

φm
g

∆T
=
√

2/3 · π

N∆T
rad/s (3.37)
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3.6 Sensors of the wind turbine system

A typical value of the number of pulses N per rotation is 212 = 4096. The operating point
value Ω̄g of the generator rotational frequency Ωg is 1.16 rad/s, as can be seen in section
3.4. The sample time ∆T is equal to 0.1 s. For the measurement noise on Ωg, the standard
deviation σεq

Ωm
g

can now be found:

σεq
Ωm

g

=
√

2/3 · π

4096 · 0.1
= 0.0063 rad/s (3.38)

If the sampling time is not constant enough, this can be taken into account with an additional
measurement noise contribution. This is neglected in this thesis.

Measurement noise has high-frequent components, and therefore the processing that is
performed to reconstruct the low-frequent control signal will reduce the noise contribution.
Therefore, if necessary, the model can also be simulated with less measurement noise to take
the noise reduction by filtering into account.

According to Van Engelen et al. (2001b), a sensible measurement of Ωg can only be
obtained if the sample time doesn’t exceed the time it takes for the fast generator axis to
complete one revolution. This yields a maximum to the sample time allowed in a real wind
turbine setup. In the turbine model described in section 3.5, the slow shaft equivalent Ωg

has a mean value of 1.16 rad/s, which can rise up to 1.4 rad/s when a wind gust occurs.
Therefore, with a typical gear ratio of 20, a maximal fast shaft equivalent Ωfse

g of 28 rad/s
can occur. This yields:

∆T ≤ 2π

Ωfse
gmax

≤ 0.22 (3.39)

In the simulation model, a sample time of 0.1 s is used, which satisfies (3.39).

3.6.2 Measurement of tower vibration accelerations

The vibrations in the tower head are measured with a digital wind turbine structural vibration
monitor, such as the PCH 1026. The product data (PCH Engineering, 1993) of this type of
monitor are used to calculate a typical measurement noise value that can be used in the
simulations.

In the product data (PCH Engineering, 1993), it can be found that all accelerometers
measure a statistical spectral noise density of 500 µg/

√
Hz over the signal bandwidth. The

sample time of the wind turbine system is 0.1 s (corresponding to 10 Hz). The use of an anti-
aliasing filter is assumed, therefore the noise bandwidth is equal to 5 Hz, half the bandwidth
associated with the sample time. Parseval’s theorem can then be used, stating that the noise
energy of the time domain signal x(t) and the frequency domain signal X(ω) must be equal:∫ ∞

−∞
|x(t)|2dt =

1
2π

∫ ∞

−∞
|X(ω)|2dω (3.40)

Since X(ω) = 500 µg/
√

Hz, the noise energy contained in the frequency domain is equal to
(X(ω))2 · 5. This yields the standard deviation of the measurement noise on the vibration
acceleration measurements: 0.011 m/s2.

When the measurements of the tower vibrations are used for turbine control, a Chebychev
band filter around the first tower eigenfrequencies is applied to reduce the noise contribution,
as described in Van Engelen et al. (2001b). Since this control loop was not implemented in
this thesis, such a filter was omitted here.
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3.6.3 Simulations with standard measurement noise

From here on, the noise values calculated in the previous sections will be referred to as
standard noise conditions: zero-mean white noise with a standard deviation of 0.011 m/s2 for
the noise in the tower vibration accelerations, and a standard deviation of 0.006 rad/s for the
noise in the rotor rotational frequency Ωr. The simulation experiment shown in figures 3.4 and
3.5 was repeated, with standard measurement noise on the system outputs. The simulation
results are shown in figures 3.6 and 3.7.
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Figure 3.6: Same simulation as in figure 3.4, but with standard measurement noise present in the

system outputs: the wind speed Vw, the pitch angle θp and the rotor rotational speed Ωr as a function

of time, with the dotted lines representing the operating point.

Figure 3.6 shows that the measurement noise on Ωr results in a noisy controlled system
input θp. In reality, a filtered version of the measured output might be used to reduce this
noise on the control signal; this was not implemented in this thesis.

Figure 3.5 shows that the naying vibration accelerations ẍny are excited very weakly, due
to the fact that Fhydr was set to zero. In figure 3.7, it is clear that this results in a very bad
signal-to-noise ratio: the amplitude of ẍny and the variance of the measurement noise are
almost equal. The naying vibrations are not used for analysis in the remainder of this thesis,
as the measurements will be too noisy in the defined simulation setup.
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Figure 3.7: For the first 40 seconds of the simulation shown in figure 3.6, with standard measurement

noise present in the system outputs, the nodding acceleration ẍnd and naying acceleration ẍny are

shown. Since the naying vibrations are weakly excited in the simulation setup, the signal-to-noise

ratio is very bad.

3.7 Conclusions

In this chapter, a simulation model of a HAWT with pitch-to-vane control was derived. The
physics were presented that describe such a wind turbine, and the relevant equations were
linearized around the most important operating point (V̄w, λ̄, θ̄p), where the HAWT reaches
full load operation. A block representation of a wind turbine system was presented, with
modules for aerodynamics, mechanics and electronics that are governed by a controller. For
a prototype of a 6 MW wind turbine, realistic values of the physical parameters are given.

Using all this information, a wind turbine simulation model was designed in Simulink,
with a controlled output Ωr and measured vibration outputs ẍnd and ẍny. The sensors of a
realistic wind turbine were described, and realistic values of the measurement noise in the
outputs were calculated. It was shown that the measurement of ẍny is weakly excited and has
a bad signal-to-noise ratio in the defined simulation setup; it will not be used for analysis.

The continuous-time state-space representation of the HAWT model with the two outputs
Ωr and ẍnd was saved in turbmat vib.mat. In the remainder of this thesis, the balanced
discrete-time state-space representation of this continuous-time HAWT is used to simulate
the wind turbine system directly in Matlab. The HAWT has stable eigenvalues, and can be
simulated with the function simulator.m.
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Chapter 4

Two fault scenarios

A common way to control the electrical power output of a wind turbine is by adjusting the
pitch angle of the rotor blades. As described in section 3.1.5, this thesis only considers pitch-
to-vane control. In this chapter, two fault detection and identification (FDI) problems are
introduced: the identification of an unknown blade pitch actuator gain, and the identification
of an unknown pitch delay. These FDI problems will be studied by simulating the wind
turbine model derived in chapter 3. For each problem, a block diagram is presented to show
how the fault appears in the wind turbine system. The closed-loop behavior is analyzed by
deriving the state-space representation of the closed-loop system and presenting relevant Bode
plots of the closed-loop system.

4.1 Detection of an unknown pitch actuator gain

This case study deals with the identification of an unknown blade pitch actuator gain in
wind turbines. The unknown pitch actuator gain can be included in the model description
by introducing a scaling factor σ on the output of the controller. The nominal system model
is then represented with σ = 1, a faulty model with 0 < σ < 1. For instance, in a wind
turbine configuration with three blades, failure of one of the blade pitch actuators results in
a reduction of the total actuator gain by a factor 2/3. The objective is to develop an FDI
scheme which is able to estimate this unknown scaling factor.

4.1.1 The wind turbine system with an unknown pitch actuator gain

In close cooperation with ECN, a simulation model of a HAWT using pitch-to-vane control
was derived as a linearization of the relevant physical equations in the vicinity of the most
common operating point. A detailed description can be found in chapter 3, a short overview
is given below. All simulation experiments take place in closed-loop; the inputs and outputs
of the wind turbine model are described in chapter 3, see table 3.1. In pitch-to-vane control,
the variations in rotor rotational frequency ∆Ωr are controlled by adjusting the pitch angle
∆θp. The goal is to keep Ωr at a constant value, despite the changes in the wind speed ∆Vw.
The controller that is used is the PI controller (3.18) on θp, designed by ECN.

The closed-loop system that results from connecting the controller to the wind turbine is
shown in figure 4.1. The wind turbine system is denoted by G0, the controller by C0 and the
unknown pitch actuator gain by σ. The model variables are defined as variations around the
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operating point values, so that they vary around zero. Therefore, the reference input signals
r1 and r2 are equal to zero.

For reasons of convenience, the operational inputs u1 = ∆Vw, ū2 = ∆θcon
p and u2 = ∆θp

are defined, as well as the outputs y1 = [ẍnd ẍny]T and y2 = ∆Ωr. This yields the system
model shown in figure 4.2.

+

+

+

+

G0

C0

∆Vw

∆θcon
p

∆θpr1

r2

[ẍnd ẍny]T

∆Ωrσ

Figure 4.1: Closed-loop wind turbine system; operational inputs and outputs.

+

+

+

+

G0

C0

u1

u2

ū2

r1

r2

y1

y2σ

Figure 4.2: Closed-loop wind turbine system; symbolic inputs and outputs.

Both the wind turbine system G0 and the controller C0 can be denoted as LTI systems,
as defined in (A.3)-(A.4). The state equations are as follows:

G0 =




x(k + 1) = Ax(k) + B1u1(k) + B2u2(k)

y1(k) = C1x(k) + D11u1(k) + D12u2(k)

y2(k) = C2x(k) + D21u1(k) + D22u2(k)

(4.1)

C0 =

{
x̄(k + 1) = Āx̄(k) + B̄y2(k)

ū2(k) = −(C̄x̄(k) + D̄y2(k)
) (4.2)

Since r1 = 0, the faulty pitch actuator gain σ is a scaling factor on the controller output
ū2(k):

u2(k) = σū2(k) (4.3)
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4.1.2 Analysis of the closed-loop system

Transfer function from ū2 to y

For the system shown in figure 4.2, it is now possible to derive the state matrices for the
closed-loop relation between ū2 and y. Substitution of (4.3) into the system equations (4.1)
yields

G0 =




x(k + 1) = Ax(k) + B1u1(k) + B2σū2(k)

y1(k) = C1x(k) + D11u1(k) + D12σū2(k)

y2(k) = C2x(k) + D21u1(k) + D22σū2(k)

(4.4)

Subsequently, y2 from (4.4) is substituted into (4.2). For ū2, this yields

ū2(k) = −(C̄x̄(k) + D̄(C2x(k) + D21u1(k) + D22σū2(k))
)

= −(C̄x̄(k) + D̄C2x(k) + D̄D21u1(k) + D̄D22σū2(k)
)

(1 + D̄D22σ)ū2(k) = −(C̄x̄(k) + D̄C2x(k) + D̄D21u1(k)
)

ū2(k) = −(1 + D̄D22σ)−1
(
C̄x̄(k) + D̄C2x(k) + D̄D21u1(k)

)
Therefore, (4.2) becomes

C0 =

{
x̄(k + 1) = B̄C2x(k) + Āx̄(k) + B̄D21u1(k) + B̄D22σū2(k)

ū2(k) = −(1 + D̄D22σ)−1
(
C̄x̄(k) + D̄C2x(k) + D̄D21u1(k)

) (4.5)

For the wind turbine system shown in figure 4.2, y1 is equal to [ẍnd ẍny]T , therefore
D11=[Dnd

11 Dny
11 ]T and D12=[Dnd

12 Dny
12 ]T . Since the wind turbine system model uses (∆Vw −

ẋnd) as the effective wind disturbance input, the values of Dnd
11 and Dnd

12 are non-zero. On
physical grounds, all other terms Dij are expected to be zero, which is indeed the case for the
turbine matrices derived in chapter 3. Therefore, in (4.4)- (4.5), the substitutions D21 = 0,
D22 = 0 and (1 − D̄D22σ)−1 = 1 can be made, yielding

G0 =




x(k + 1) = Ax(k) + B1u1(k) + B2σū2(k)

y1(k) = C1x(k) + D11u1(k) + D12σū2(k)

y2(k) = C2x(k)

(4.6)

C0 =

{
x̄(k + 1) = B̄C2x(k) + Āx̄(k)

ū2(k) = −(C̄x̄(k) + D̄C2x(k)
) (4.7)

Easily, the state equations can now be obtained:[
x(k + 1)
x̄(k + 1)

]
=
[

A 0
B̄C2 Ā

] [
x(k)
x̄(k)

]
+
[
B1 B2σ

0 0

] [
u1(k)
ū2(k)

]
(4.8)[

y1(k)
y2(k)

]
=
[
C1 0
C2 0

] [
x(k)
x̄(k)

]
+
[
D11 D12σ

0 0

] [
u1(k)
ū2(k)

]
(4.9)

From (4.8)-(4.9) it follows, that when the transfer function from ū2 to y is analyzed, the fault
shows itself as a scaling factor on the controller output ū2(k).
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Transfer function from u1 to y

In order to investigate the behavior of the closed-loop system as a function of the disturbance
input u1(k), the equation for ū2(k) from (4.7) must be substituted into the system equations
(4.8)-(4.9). This yields:[

x(k + 1)
x̄(k + 1)

]
=
[
A − B2σD̄C2 −B2σC̄

B̄C2 Ā

] [
x(k)
x̄(k)

]
+
[
B1

0

]
u1(k) (4.10)[

y1(k)
y2(k)

]
=
[
C1 − D12σD̄C2 −D12σC̄

C2 0

] [
x(k)
x̄(k)

]
+
[
D11

0

]
u1(k) (4.11)

The state equations of the closed-loop system (4.10)-(4.11) can now be written as follows:[
x(k + 1)
x̄(k + 1)

]
= Ã(σ)

[
x(k)
x̄(k)

]
+ B̃u1(k) (4.12)[

y1(k)
y2(k)

]
= C̃(σ)

[
x(k)
x̄(k)

]
+ D̃u1(k) (4.13)

Combining (4.10)-(4.11) with (4.12)-(4.13), it is clear that a faulty actuator gain σ shows
itself as a component fault: it changes the system dynamics, since it changes the state matrix
Ã(σ).

Bode plots of the closed-loop system

It is interesting to analyze how the closed-loop system behaves for different values of the
pitch actuator gain σ, and to find out how the wind speed u1(k) = ∆Vw(k) affects the system
behavior. A customary approach is to compute the transfer functions G(ejω) from ∆Vw(k) to
certain variables of interest. A transfer function describes the system behavior as a function of
the signal frequency ω, and can be displayed graphically in a Bode plot, where the magnitude
log |G(ejω)| and the phase arg(G(ejω)) are plotted against log(ω).

Figure 4.3 shows the Bode plot of the transfer function from ∆Vw to ∆Ωr. From this plot
it is obvious that the largest change in behavior occurs in the low frequency area. At low
frequencies, the magnitude of ∆Ωr increases if σ decreases.

Figure 4.4 shows the Bode plot of the transfer function from ∆Vw to the faulty controlled
input ∆θp. Again, the largest change in behavior occurs in the low frequency area: the
magnitude of the magnitude of ∆θp increases if σ decreases. The similarity between figure 4.3
and figure 4.4 is obvious; this is logical, considering that the transfer function from ∆Ωr to
∆θp is that of the low-order PI controller (3.18).

The Bode plot of the transfer function from ∆Vw to the nodding vibration ẍnd is shown
in figure 4.5. A decrease of σ slightly increases the magnitude of the low-frequent nodding
vibrations. It must be noted here, that a faulty actuator gain caused by a broken blade in
a real wind turbine gives rise to rotational instabilities, which result in a larger change of
the vibration spectrum; this behavior is not included in the wind turbine model described in
chapter 3.
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Figure 4.3: Bode plot of the transfer function

from ∆Vw to ∆Ωr, for σ = 1 (solid), σ = 2/3
(dashed) and σ = 1/3 (dotted).
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tion from ∆Vw to the controlled input ∆θp, for
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4.2 Detection of an unknown pitch actuator delay

This case study deals with the identification of an unknown delay of the controlled pitch angle
∆θp. In the wind turbine model described in chapter 3, this delay is modeled with a Padé
approximation: a lead-lag filter (3.6) with two zeros and two poles, which is repeated below:

θd
p

θp
=

(s − (p1 + j · p2)) · (s − (p1 − j · p2))
(s − (−p1 + j · p2)) · (s − (−p1 − j · p2))

A change in the delay time modifies the two poles in equation (3.6), and therefore changes
two eigenvalues of the wind turbine system. In figure 4.6, the delay transfer (3.6) is modeled in
a separate block d0, which has the controller output ū2 = ∆θp, the desired pitch angle, as the
input signal, and the delayed pitch angle u2 = ∆θd

p as the output signal. The continuous-time
state-space representation of the delay system block d0 is as follows:

Ac =
[−2p1 −2p2

2p2 0

]
Bc =

[
1
0

]
Cc =

[−4p1 0
]

Dc =
[
1
]

For further analysis, the continuous-time system must be discretized with a sample time
of 0.1s; this discrete-time system representation is denoted as [Ã, B̃, C̃, D̃] in (4.16). It was
found that D̃ = 1 for all values of the delay parameters p1 and p2, and that the discrete state
matrices Ã, B̃ and C̃ change when the delay parameters are changed.

The wind turbine system is designed with a delay of 0.2s, the design values of the parame-
ters p1 and p2 are shown in section 3.4. When a delay differs from the design delay, the delay
time is reversely proportional to these parameters, as can be seen in table 4.1. The objective
is to develop an FDI scheme that is able to estimate the unknown pitch delay.

Table 4.1: Values of the parameters p1 and p2 in equation (3.6) for various implementations of the

delay time in the blade pitch actuator. A healthy wind turbine system has a delay of 0.2s.

delay (s) p1 p2

0.1 30.000000 17.320508
0.2 15.000000 8.660254
0.3 10.000000 5.773503
0.4 7.500000 4.330127

4.2.1 The wind turbine system with an unknown pitch delay

The wind turbine system G0 in figure 4.2 includes the pitch actuator delay. To analyze the
effect of the pitch delay on the closed-loop behavior, the wind turbine system G0 must be
divided into a block d0, which contains the pitch delay, and a block G∗

0, which represents the
rest of the wind turbine system. The result is shown in figure 4.6, where the reference signals
r1 and r2 are equal to zero. The same inputs and outputs are considered as in section 4.1.1.
As mentioned before, the controlled input u2 now represents the delayed pitch angle θd

p.
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Figure 4.6: Closed-loop wind turbine system, where d0 represents the pitch actuator delay; symbolic

inputs and outputs.

The state equations for the turbine system G∗
0, the controller C0 and the delay d0 can

again be defined as LTI systems, and written as follows:

G∗
0 =




x(k + 1) = Ax(k) + B1u1(k) + B2u2(k)

y1(k) = C1x(k) + D11u1(k) + D12u2(k)

y2(k) = C2x(k) + D21u1(k) + D22u2(k)

(4.14)

C0 =

{
x̄(k + 1) = Āx̄(k) + B̄y2(k)

ū2(k) = −(C̄x̄(k) + D̄y2(k)
) (4.15)

d0 =

{
x̃(k + 1) = Ãx̃(k) + B̃ū2(k)

u2(k) = C̃x̃(k) + D̃ū2(k)
(4.16)

The matrix D̃ is included in the analysis, though D̃ = 1 for all values of the delay parameters.

4.2.2 Analysis of the closed-loop system

Transfer function from ū2 to y

For the system model shown in figure 4.6, the state matrices of the transfer function from ū2

to y are derived. The delayed output u2(k) of (4.16) is substituted into (4.14). Using the fact
that D21 = 0 and D22 = 0, this yields:

G∗
0 =




x(k + 1) = Ax(k) + B1u1(k) + B2C̃x̃(k) + B2D̃ū2(k)

y1(k) = C1x(k) + D11u1(k) + D12C̃x̃(k) + D12D̃ū2(k)

y2(k) = C2x(k)

(4.17)

The subsequent substitution of y2(k) from (4.17) into (4.15) yields:

C0 =

{
x̄(k + 1) = Āx̄(k) + B̄C2x(k)

ū2(k) = −(C̄x̄(k) + D̄C2x(k)
) (4.18)

The closed-loop relation between ū2 and y now follows from (4.17), (4.18) and (4.16). It is
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shown in (4.19)-(4.20):


x(k + 1)

x̄(k + 1)
x̃(k + 1)


 =


 A 0 B2C̃

B̄C2 Ā 0
0 0 Ã




x(k)

x̄(k)
x̃(k)


+


B1 B2D̄

0 0
0 B̃


[u1(k)

ū2(k)

]
(4.19)

[
y1(k)
y2(k)

]
=
[
C1 0 D12C̃

C2 0 0

]x(k)
x̄(k)
x̃(k)


+

[
D11 D12D̃

0 0

] [
u1(k)
ū2(k)

]
(4.20)

It is intuitively logical that a variation in the pitch delay changes the dynamics of the
system, and therefore results in a different state matrix. From (4.19)-(4.20), it is immediately
clear that the transfer function ū2 to y shows a different dynamic behavior for a different
delay.

Transfer function from u1 to y

In order to investigate the behavior of the closed-loop system as a function of the disturbance
input u1(k), the equation for ū2(k) from (4.18) must be substituted into (4.17) and (4.16).
This yields:

G∗
0 =




x(k + 1) = Ax(k) + B1u1(k) + B2C̃x̃(k) − B2D̃C̄x̄(k) − B2D̃D̄C2x(k)

y1(k) = C1x(k) + D11u1(k) + D12C̃x̃(k) − D12D̃C̄x̄(k) − D12D̃D̄C2x(k)

y2(k) = C2x(k)

C0 =
{

x̄(k + 1) = Āx̄(k) + B̄C2x(k)

d0 =
{

x̃(k + 1) = Ãx̃(k) − B̃C̄x̄(k) − B̃D̄C2x(k)

These equations can be rewritten as the state-space representation (4.21)-(4.21). It de-
scribes the influence of u1(k) on the closed-loop behavior and the system outputs. Logically,
a variable delay again shows itself as a component fault.


x(k + 1)

x̄(k + 1)
x̃(k + 1)


 =


A − B2D̃D̄C2 −B2D̃C̄ B2C̃

B̄C2 Ā 0
−B̃D̄C2 −B̃C̄ Ã




x(k)

x̄(k)
x̃(k)


+


B1

0
0


u1(k) (4.21)

[
y1(k)
y2(k)

]
=
[
C1 − D12D̃D̄C2 −D12D̃C̄ D12C̃

C2 0 0

]x(k)
x̄(k)
x̃(k)


+

[
D11

0

]
u1(k) (4.22)

Bode plots of the closed-loop system

Analogous to the previous FDI problem, the closed-loop behavior is visualized by showing
three relevant bode-plots for three different values of the pitch delay.

Figure 4.7 shows the Bode plot of the transfer function from ∆Vw to ∆Ωr. Note that the
frequency range is smaller than in figure 4.3. Below ω = 5 rad/s, an increasing delay results
in a higher magnitude of ∆Ωr, except close to the minimum around ω = 2 rad/s. Above
ω = 5 rad/s, an increasing delay results in a slightly lower magnitude of ∆Ωr.
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4.2 Detection of an unknown pitch actuator delay

Figure 4.8 shows the Bode plot of the transfer function from ∆Vw to the controlled input
∆θp. Below ω = 5 rad/s, an increasing delay results in a higher magnitude of ∆Ωr, except
close to the minimum around ω = 2 rad/s. Above ω = 5 rad/s, an increasing delay results in
a slightly lower magnitude of ∆Ωr. The similarity between figure 4.7 and figure 4.8 results
from the low-order controller, which determines the transfer function from ∆Ωr to ∆θp.
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The Bode plot of the transfer function from ∆Vw to the nodding vibration ẍnd is shown
in figure 4.9. A decrease of σ slightly increases the magnitude of the nodding vibration
acceleration, for ω < 5, and not in the peak at ω = 2. For ω > 5, the magnitude of the
nodding vibration acceleration slightly decreases.
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Two fault scenarios

4.3 Conclusions

In chapter 3, a realistic simulation model was designed of a HAWT that uses pitch-to-vane
control. This model will be used as a simulation environment for FDI problems in the re-
mainder of this thesis.

This chapter introduced two realistic FDI problems for a HAWT: the identification of an
unknown blade pitch actuator gain and the identification of an unknown pitch delay. A fault
in the wind turbine system is defined as a deviation of these system parameters from their
normal operating values. In this thesis, methods have to be found that are able to estimate
these unknown parameters from closed-loop input/output data of the turbine system.

A block scheme of the closed-loop wind turbine system was presented for each fault sce-
nario, in order to visualize where the fault appears in the turbine system. The state-space
representations of the transfer function from the controlled input ∆θp to the system outputs,
and of the wind disturbance input ∆Vw to the system outputs were derived, to be used in the
remainder of this thesis. Relevant Bode plots were shown for several fault values, to visualize
the effect of a fault on the dynamic behavior of the closed-loop system.
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Chapter 5

System identification methods

5.1 Introduction

In general, there are two methods to arrive at a model of an engineering system. First princi-
ples modeling uses physical knowledge in order to find a theoretical description of the process.
Experimental modeling, or system identification, uses measurements of several process inputs
and outputs to identify a model that approximates the physical process as well as possible.

This chapter investigates whether the system identification approach can be used to iden-
tify a model of the wind turbine system, using closed-loop input and output measurements.
If a reliable model of the wind turbine system can be identified from a data batch, a fault can
be represented as a slowly varying parameter that has a constant value in the data batch. A
different value of this unknown parameter has the result that a different model description is
identified from the data batch. A nominal system model can be identified from a fault-free
wind turbine system, so that an identified model can be compared with the nominal model
in a parameter estimation scheme (Isermann, 1997), in order to to estimate the unknown
parameter during the batch of process data.

5.2 Closed-loop spectral analysis

Van den Hof (1997) presents a general closed-loop system, shown in figure 5.1. Here, e(t) is
an unknown disturbance signal, r1 is a reference value, a setpoint or noise disturbance, and
r2 a setpoint or measurement noise. G0 represents the plant, and H0 is a filter which converts
the disturbance input e(t) to the disturbance v(t) on the outputs. The controller is denoted
C, and y(t) represents the controlled system output Ωr. The data equations of the general
closed-loop system in figure 5.1 are as follows:

y(t) = G0(q)u(t) + H0(q)e(t) (5.1)

u(t) = C(q)[r2(t) − y(t)] + r1(t) (5.2)

If it is not important to consider the separate effects of r1 and r2, the total reference signal
r(t) can be defined as

r(t) = r1(t) + C(q)r2(t) (5.3)

The feedback law (5.2) can be rewritten as

u(t) = r(t) − C(q)y(t) (5.4)
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Figure 5.1: A general closed-loop system, presented by Van den Hof (1997)

Van den Hof (1997) rewrites the closed-loop equations for u(t) and y(t) as

y(t) = (I + G0(q)C(q))−1[G0(q)r(t) + H0(q)e(t)] (5.5)

u(t) = (I + C(q)G0(q))−1[r(t) − C(q)H0(q)e(t)] (5.6)

The input sensitivity S0(z) and the output sensitivity W0(z) are defined as:

S0(z) = (I + C(z)G0(z))−1 (5.7)

W0(z) = (I + G0(z)C(z))−1 (5.8)

Using the fact that W0G0 = G0S0 and CW0 = S0C, equations (5.5) - (5.6) simplify into

y(t) = G0(q)S0(q)r(t) + W0(q)H0(q)e(t) (5.9)

u(t) = S0(q)r(t) − C(q)W0(q)H0(q)e(t) (5.10)

Van den Hof (1997) describes the closed-loop identification problem of Söderström &
Stoica (1989): the spectral analysis estimate Ĝ(eiω) of the system G0 is calculated by using
direct identification: system identification that uses the controlled input data u(t) and the
output data y(t).

Let r2(t) ≡ 0, r1 and e uncorrelated, and y and u available from measurements. The
signal z(t) = C(q)H0(q)e(t) is introduced, yielding the following descriptions for the input
and output signals:

y(t) = S0[G0(q)r1(t) +
1

C(q)
z(t)] (5.11)

u(t) = S0(q)[r(t) − z(t)] (5.12)

In the frequency domain, this yields

Ψu(ω) = |S0(eiω)|2[Ψr1(ω) + Ψz(ω)] (5.13)

Ψyu(ω) = |S0(eiω)|2[G0(eiω)Ψr1(ω) − 1
C(eiω)

Ψz(ω)] (5.14)

Assuming that the spectral densities Ψu(ω) and Ψyu(ω) can be estimated exactly (which is
asymptotically true for a large number of data points), the spectral analysis estimate Ĝ(eiω)
is found to be

Ĝ(eiω) =
Ψyu(ω)
Ψu(ω)

=
G0(eiω)Ψr1(ω) − Ψz(ω)

C(eiω)

Ψr1(ω) + Ψz(ω)
(5.15)
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5.3 Experiment - system identification in closed-loop

The spectral analysis estimate Ĝ(eiω) (5.15), obtained with direct identification from u(k)
and y(k), has two extreme cases:

No external disturbance: e(t) = 0, so z(t) ≡ 0 and Ψz(ω) = 0, simplifying (5.15) into

Ĝ(eiω) = G0(eiω) (5.16)

No external signal: r1(t) = 0, therefore Ψr1(ω) = 0, which simplifies (5.15) into

Ĝ(eiω) =
−1

C(eiω)
(5.17)

If both the disturbance e(t) and the reference input r1(t) are nonzero, Ĝ(eiω) is found as a
weighted combination of the extreme cases (5.16)-(5.17).

A similar proof is presented in Ljung (1987, Theorem 14.2). In a system setup such
as figure 5.1, the closed-loop identification can provide information about the system G0 if
and only if r1(t) is a persistently exciting input signal. Horch (2000, Theorem 6.1) presents a
more general formulation of this theorem, and a generalization of the closed-loop identification
problem described by Van den Hof (1997). It is shown, that in case a persistently exciting
disturbance v(t) is applied to the system and the reference signal r1(t) has a constant value,
the relation between the control signal u(t) and the measured output y(t) is always determined
by the controller, i.e. u(t) = −C(q)y(t). No matter how much u(t) and y(t) vary, as long as
no persistently exciting signal r1(t) enters the loop, only the controller can be identified. This
broadens the application range of (5.17): the zero input reference r1(t) of Van den Hof (1997)
can be seen as a special case of a constant input reference. This is mentioned here, to show
that the closed-loop identification problem cannot be solved in a trivial way by designing the
controller around a non-zero constant reference input.

5.3 Experiment - system identification in closed-loop

It is interesting to investigate whether FDI schemes can be based on parameter estimation
methods, which compare the fault-free and the faulty system model. A necessary prerequisite
is that a reliable system model can be identified from measured data.

The wind turbine model of chapter 3, which is shown in figure 4.2, is compared with the
general closed-loop system of Van den Hof (1997), as shown in figure 5.1. The wind turbine
system has a non-white disturbance input e(t) = ∆Vw, and reference signals r1 and r2 equal
to zero. It is therefore expected that the wind turbine system cannot be identified directly
from u(t) and y(t): this identification will probably yield the negative inverse −1/C of the
controller instead of the turbine system, a result similar to (5.17). This will be verified with
an experiment; for the implementation, see the file clident.m.

The continuous-time wind turbine system matrices [A, B, C, D] and the disturbance ma-
trices [A, Bh, C, Dh] have been derived from the Simulink model presented in section 3.5. The
continuous-time wind turbine has been reconstructed in Matlab’s control toolbox, with the
disturbance input e(t) = ∆Vw, the controlled input u(t) and controlled output y(t) = ∆Ωr.

Errors-in-variables (EIV-)MOESP is a subspace identification method that is particularly
suitable for closed-loop identification, see Chou & Verhaegen (1997). For more information
about subspace identification, see e.g. Haverkamp (2001) and Verhaegen & Verdult (2001).
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Using EIV-MOESP on u(t) and y(t) data from the wind turbine model, a discrete-time
system model [Ae, Be, Ce, De] of order 5 has been estimated with a sample time of 0.1s. A
Variance-Accounted-For (VAF), which is a common measure of accuracy, of 100% was found
on validation data.

The PI controller (3.18) and the turbine system [A, B, C, D] have been discretized with
a sample time of 0.1s. In figure 5.2, the identified system model is compared with −1/Cd,
where Cd is the discrete-time system model of the controller. The result is as expected: the
estimated model doesn’t describe the wind turbine system, but the negative inverse controller.
The slight mismatch of the two plots originates from the fact that a 5th order system model is
identified of the 1st order controller, so that small numerical errors are included in the model
description. If a model of order 1 is estimated, an even better fit can be obtained.
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Figure 5.2: Comparison of impulse responses of the identified system and of the negative inverse

controller −1/Cd.

5.4 Conclusions

In this chapter, it was analyzed whether the system identification approach can be used to
identify a reliable model of the wind turbine system from inputs and outputs measured in
closed-loop. It can be concluded, that this is not possible.

An operational wind turbine system has reference inputs equal to zero, and the wind speed
is an unknown input that is the driving disturbance of the system. A well-known closed-loop
identification problem was encountered: in the closed-loop setup defined for the the wind
turbine, a system identification approach yields a model of the inverse controller instead of
a model of the wind turbine system. This was verified in a simulation experiment. It is
therefore clear, that a fault in the turbine system cannot be detected with an approach based
on closed-loop system identification: the identified model only contains information about
the controller, and contains no information about the wind turbine system.

48



Chapter 6

Kalman filter methods

Introduction

In this chapter, it is investigated whether a fault detection and identification scheme for a wind
turbine system can be based on a linear Kalman filter, also known as a Kalman observer. The
discrete-time Kalman filter was introduced by Kalman (1960), and has been the subject of
extensive research and application; see Ljung (1987) and Godwin et al. (2001) for a thorough
description. If a Kalman filter is used in practice, it is necessary that a sufficiently accurate
mathematical model of the wind turbine system is available; this is assumed to be the case.
The Kalman filter uses the known inputs of the real system to reconstruct the system states
in such a way, that the system outputs are predicted as accurately as possible. An unknown
variable can be estimated, if it is included in an augmented system state.

This chapter only deals with the FDI problem defined in section 4.1, the detection of the
unknown pitch actuator gain σ. In section 6.1, the discrete-time Kalman filter is introduced,
and it is investigated to what extent it can be used for FDI purposes. Section 6.2 rewrites the
Kalman filter formulation as a least squares problem. This least squares problem is redefined
in section 6.3 as a Kalman filter problem over a moving time window, which allows σ to
be estimated as an average value during this time window. Section 6.4 presents a nonlinear
Kalman filter problem over a moving time window.

6.1 The discrete-time Kalman filter

Consider the LTI system (A.3)-(A.4):

x(k + 1) = Ax(k) + Bu(k) + w(k)

y(k) = Cx(k) + Du(k) + v(k)

with w(k) the process noise, a zero-mean white noise sequence with covariance matrix Q, and
v(k) the measurement noise: zero-mean white noise with covariance matrix R. From here
on, the noise sequences will be denoted compactly as w(k) � (0, Q) and v(k) � (0, R), in
analogy with Verhaegen & Verdult (2001).

The recursive Kalman filter algorithm starts at time instant k; using an initial (a priori)
state estimate x̂(k|k − 1) and an initial process noise estimate P̂ (k|k − 1), it consists of two
update steps: the measurement update and the time update.
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The measurement update adjusts the estimate x̂(k|k − 1) by an actual measurement:

K(k) = P̂ (k|k − 1)CT (CP̂ (k|k − 1)CT + R(k))−1 (6.1)

x̂(k|k) = x̂(k|k − 1) + K(y(k) − Du(k) − Cx̂(k|k − 1)) (6.2)

P̂ (k|k) = (I − KC)P̂ (k|k − 1) (6.3)

First, the current Kalman gain K(k) is computed. Then, the process measurement y(k) is
used to generate the a posteriori state estimate x̂(k|k): the measurement update. Finally,
the a posteriori error covariance estimate P̂ (k|k) is computed.

The time update projects the current state estimate x̂(k|k) ahead in time:

x̂(k + 1|k) = Ax̂(k|k) + Bu(k) (6.4)

P̂ (k + 1|k) = AP̂ (k|k)AT + Q(k) (6.5)

Using the measurement update x̂(k|k), the time update calculates the one-step ahead predic-
tor x̂(k + 1|k), which is the a priori state estimate for the next time step. Also, the a priori
error covariance estimate P̂ (k + 1|k) for the next time step is computed.

The function it kalm.m was created in Matlab to compute the current Kalman gain K(k)
and the predicted noise covariance P̂ (k+1|k) during each time step. Here, K(k) is calculated
as in (6.1), and P̂ (k + 1|k) results from the Riccati equation (Godwin et al., 2001), obtained
by substituting (6.1) and (6.3) into (6.5):

P̂ (k + 1|k) = A
(
P̂ (k|k − 1)

−P̂ (k|k − 1)CT (R + CP̂ (k|k − 1)CT )−1CP̂ (k|k − 1)
)
AT + Q (6.6)

6.1.1 The wind turbine system

The detection problem of the unknown pitch actuator gain σ was described in section 4.1.
The state-space representation of the transfer function from the pitch angle θp to the system
outputs is shown in (4.8)-(4.9). The naying vibrations ẍny are not used for analysis, so
y1 = ẍnd and y2 = ∆Ωr from here on. The wind speed u1(k) is denoted as vw(k), and the
pitch angle ū2(k) as u(k). The state matrices are renamed: the substitutions B1 = Bh and
B2 = B are made, as well as D11 = Dh and D12 = D. A process noise term w(k) � N(0, Q)
is added to the state vector, which can be written as a unit covariance zero-mean noise term
w̃(k) � (0, I) multiplied by the process noise covariance Q1/2. Similarly, a measurement
noise term v(k) � (0, R) is added to the output vector. This yields the following state-space
representation of the wind turbine system, with a faulty actuator gain σ(k):

x(k + 1) = Ax(k) + Bhvw(k) + Bσ(k)u(k) + Q1/2w̃(k) (6.7)[
y1(k)
y2(k)

]
=
[
C1

C2

]
x(k) +

[
Dh Dσ(k)
0 0

] [
vw(k)
u(k)

]
+ R1/2ṽ(k) (6.8)

with the state vector x ∈ R
n, the input vector u ∈ R

m and the output vector y ∈ R
�; k ∈ N

+

is the time instant.
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6.1.2 The wind speed in an augmented state

The wind speed vw(k) is considered unknown. It is interesting to verify whether the Kalman
filter can be used to estimate the wind speed. This requires vw(k) to be included in an
augmented system state. The wind speed is defined as a random walking variable:

vw(k + 1) = vw(k) + Q1/2
vw

w̃vw(k) (6.9)

with w̃vw(k) � (0, I) zero-mean unit variance white noise, multiplied with the square root of
the covariance matrix Qvw . Here, Qvw represents the random walk size: a larger value of Qvw

results in bigger random steps, yielding faster but less accurate estimation. The wind turbine
system (6.7)-(6.8) can now be rewritten as an augmented state-space system:

[
x(k + 1)
vw(k + 1)

]
=
[
A Bh

0 1

] [
x(k)
vw(k)

]
+
[
B

0

]
σ(k)u(k) +

[
Q1/2 0

0 Q
1/2
vw

] [
w̃(k)

w̃vw(k)

]
(6.10)

[
y1(k)
y2(k)

]
=
[
C1 Dh

C2 0

] [
x(k)
vw(k)

]
+
[
D

0

]
σ(k)u(k) + R1/2ṽ(k) (6.11)

With the appropriate definitions of the augmented system matrices, and the augmented state
vector x̆ ∈ R

n+1, the augmented system (6.10)-(6.11) can be denoted as

x̆(k + 1) = Ăx̆(k) + B̆σ(k)u(k) + Q̆1/2w̆(k)

y(k) = C̆x̆(k) + D̆σ(k)u(k) + R1/2ṽ(k)

In section 3.6, the standard measurement noise conditions were described as zero-mean
white noise in the system outputs, with a standard deviation of 0.011 m/s2 for y1 and 0.006
rad/s2 for y2; with the squares of these values on the diagonal of a 2 by 2 matrix, the standard
measurement noise covariance matrix Rsmn is obtained:

Rsmn =
[
1.2 · 10−4 0

0 3.6 · 10−5

]
(6.12)

Experiments

The pitch actuator gain σ(k) is set to 1 for all time instants k, so that (6.10)-(6.11) becomes an
LTI system of the fault-free wind turbine. Solving the Kalman filter for this augmented system
yields estimates of the wind turbine states and the wind speed. Two cases are considered:
the SISO experiment only uses the output y2(k) = ∆Ωr(k), the MIMO experiment uses both
outputs y1(k) = ẍnd and y2(k). The implementation can be found in the m-file mrk w.m.

It was found, that good results are obtained if the process noise covariance Q is set to
zero. The measurement noise covariance R has to be chosen non-zero, otherwise the inversion
in (6.6) is not possible.

In the first experiment, no measurement noise was simulated on the system outputs; the
value of the measurement noise covariance was set to R = 0.01 · Rsmn (6.12), corresponding
to 10% of the noise amplitude of standard measurement noise. The random walk size Qvw

was set to 5. The wind estimates obtained with the SISO and MIMO experiment are shown
in figure 6.1 and figure 6.2, respectively. The VAF between real and estimated wind speed
was found to be 94.8% in the SISO experiment, and 100.0% in the MIMO experiment.
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Figure 6.1: The wind speed vw(k), estimated

with the regular discrete-time Kalman filter

as an augmented system state, in the SISO

setup, using the measurement of y2. No mea-

surement noise in the output, and Qvw
= 5.
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Figure 6.2: The wind speed vw(k), estimated

with the regular discrete-time Kalman filter as

an augmented state, in the MIMO setup, us-

ing the measurements of y1 and y2. No mea-

surement noise in the outputs, and Qvw
= 5.
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Figure 6.3: The wind estimate vw(k) in the

SISO setup: same experiment as shown in

figure 6.1, with standard measurement noise

present in the output and Qvw
= 0.1
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Figure 6.4: The wind estimate vw(k) in the

MIMO setup: same experiment as shown in

figure 6.2, with standard measurement noise

present in the outputs and Qvw
= 5.

In a second experiment, realistic measurement noise was present in the system outputs,
and the corresponding R = Rsmn (6.12) was selected. In the SISO setup, the random walk
size Qvw had to be lowered to 0.1, otherwise the estimate became too noisy. In the MIMO
setup, Qvw was again set to 5. The resulting wind estimates for the SISO and MIMO setup
are shown in figure 6.3 and figure 6.4, respectively. The VAF between real and estimated wind
speed was found to be 81.7% in the SISO experiment, and 99.0% in the MIMO experiment.
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Analysis of the results

The wind speed vw(k) was included in an augmented system state, so that it could be es-
timated with the discrete-time Kalman filter algorithm, as described in section 6.1. The
measurement noise covariance R had to be chosen non-zero, even when no measurement
noise was simulated. The process noise on the turbine states Q could be set to zero; it was
found that a non-zero noise covariance Qvw on the wind estimate provides enough excitation
for all states. This means that Qvw is the only tuning parameter of the algorithm.

Two simulation setups were considered: the SISO setup only uses the measurement of
Ωr, and the MIMO setup uses the measurements of ẍnd and ∆Ωr. The experiments were
performed with and without standard measurement noise in the system outputs. In the
MIMO setup without measurement noise, a perfect estimate of the wind speed was obtained.
When standard measurement noise was present in the outputs, the accuracy of the estimate
was a little lower, but still very good. The estimates in the SISO setup were less accurate; this
was especially clear when standard measurement noise was present in the controlled output.

6.1.3 The pitch actuator gain in an augmented state

In section 6.1.2, it was shown that the Kalman filter can be used to estimate the wind speed,
by including it in an augmented system state. The best results were obtained in the MIMO
setup, using both the measurements ẍnd and ∆Ωr. In this section, only the MIMO setup is
considered, and the unknown pitch actuator gain σ(k) is included in an augmented system
state as well. It is therefore defined as a random walking variable, in analogy with the wind
speed in (6.9):

σ(k + 1) = σ(k) + Ψ1/2p̃(k) (6.13)

with p̃(k) � (0, I) zero-mean unit variance white noise, multiplied with the square root of
the covariance matrix Ψ. The value of Ψ is a measure for the step size of the random walk: a
larger Ψ results in faster but less accurate estimation. The wind turbine system (6.10)-(6.11)
can now be written as:

 x(k + 1)
vw(k + 1)
σ(k + 1)


 =


A Bh Bu(k)

0 1 0
0 0 1




 x(k)

vw(k)
σ(k)


+


Q1/2 0 0

0 Q
1/2
vw 0

0 0 Ψ1/2




 w̃(k)

w̃vw(k)
p̃(k)


(6.14)

y(k) =
[
C1 Dh Du(k)
C2 0 0

] x(k)
vw(k)
σ(k)


+ R1/2ṽ(k) (6.15)

The augmented system (6.14)-(6.15) with both wind speed vw and faulty pitch actuator
gain σ(k) included in an augmented system state can be denoted as

x̆(k + 1) = Ă(k)x̆(k) + Q̆1/2w̆(k)

y(k) = C̆(k)x̆(k) + R1/2ṽ(k)

with the appropriate definitions of the augmented system matrices, and the augmented state
vector x̆ ∈ R

n+2. The augmented system (6.14)-(6.15) is time variant: Ă(k) and C̆(k) depend
on the time instant k, as they contain the controlled input u(k). Such a system is called a
Linear Time Variant (LTV) system, as presented in (A.1)-(A.2). The state matrices have to
be calculated at every time instant k, using the known value of u(k).
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First experiment: no measurement noise

The Kalman filter algorithm for the augmented system (6.14)-(6.15) was implemented in the
m-file mrk ws.m. Only the MIMO setup is considered: the Kalman filter uses the measure-
ments of ẍnd and Ωr. An abrupt fault is simulated. Using the HAWT simulation function
simulator abrupt.m, the pitch actuator gain σ was changed from 1 to 2/3 at time instant
k = 500.

In the first experiment, no measurement noise was present in the system outputs. The
covariance matrices Q

1/2
vw and Ψ1/2 are the tuning parameters of this Kalman filter. It was

found, that the process noise covariance Q on the turbine states can be set to zero. As
in section 6.1.2, the measurement noise covariance R must be chosen non-zero: it was set
to R = 0.01 · Rsmn (6.12). With Q

1/2
vw = 5 and Ψ1/2 = 0.01, the wind estimate shown in

figure 6.5 was obtained. The VAF between real and estimated wind speed was found to be
99.98%, an almost perfect result. The estimate of the σ(k) is shown in figure 6.6. A VAF of
99.23% between the real and estimated pitch actuator gain was found. The mismatch in the
wind estimate occurs mainly just after the fault: if σ = 1 for all k, the VAF between real and
estimated wind is equal to 100.00%.
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Figure 6.5: The estimate of the wind speed

vw(k), when both wind speed and pitch actua-

tor gain are included in an augmented system

state. No measurement noise was present in

the system outputs.
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Figure 6.6: The estimate of the pitch ac-

tuator gain σ(k), when vw(k) and σ(k) are

included in an augmented system state. No

measurement noise in the system outputs, and

σ(k) changes abruptly at k = 500.

Figure 6.6 shows that fault identification is obtained after 20 time instants, when the
estimated pitch actuator gain equals the simulated σ = 2/3. A quick fault detection can be
obtained with the numerical derivative σ̇est (6.16) of the estimated pitch actuator gain σest:

σ̇est(k) =
σest(k) − σest(k − 1)

Ts
(6.16)

Figure 6.7 shows a plot of σ̇est(k). The steepest descent is very clear. It occurs at k = 501,
one time instant after the fault occurrence: an immediate fault detection. The estimate of
the turbine states is very good, as shown in figure 6.9. The values of the VAF between real
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Figure 6.7: The numerical derivative σ̇est(k)
of the estimated σ(k) shown in figure 6.6.
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Figure 6.8: Simulation as in figure 6.6, but

with a larger random walk size Ψ = 0.1 for

σ(k).
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Figure 6.9: The real turbine states xr and the estimated turbine states xe of the simulation shown

in figure 6.6. On this scale, only the third state shows a slight mismatch just after the change time

k = 500.

states xr and estimated states xe were found to be very high (in %):

V AF (xe, xr) =
[

100.0 100.0 99.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0
]T
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To illustrate the importance of the choice of the random walk size Ψ of the pitch actuator
gain σ(k), the experiment in figure 6.6 is repeated with a larger value of Ψ = 0.1. The
resulting estimate of σ(k) is shown in figure 6.8. The change detection is even faster, but the
estimate is less accurate, since the allowed random walk size is larger.

Second experiment: standard measurement noise

The previous experiment was repeated with standard measurement in the system outputs, as
described in section 3.6; the corresponding measurement noise covariance matrix R = Rsmn

(6.12) was chosen.
The measurement noise deteriorates the estimates. The random step sizes Qvw and Ψ

of the augmented state variables vw(k) and σ(k) turned out to be very important tuning
parameters to obtain a good result. A suitable pair was Qvw = 0.08 and Ψ = 0.0002. The
wind estimate is shown in figure 6.10, the corresponding VAF is 99.0%. The estimate of the
fault is shown in figure 6.11, with a VAF of 90.0%. The state estimates are still very good;
the plot (which is not shown) looks similar to figure 6.9; the VAF values between real states
xr and estimated states xe are a little lower, but still quite good (in %):

V AF (xe, xr) =
[

99.3 99.5 99.4 99.7 99.7 96.7 97.7 98.5 99.2 98.6
]T

The numerical derivative σ̇(k) of the pitch actuator gain was derived as in (6.16); it
is shown in figure 6.12. It is clear that the derivative is less reliable for FDI purposes:
the negative descent just after the fault occurrence is only slightly larger than other peaks.
However, a threshold in the estimate of σ(k) in figure 6.13 can be used to detect a fault, e.g.
σ(k) < 0.8 for k > 520, so the fault is detected after 20 time instants. The fault is identified
as well: the estimate of σ(k) tracks the simulated σ(k) quite well.
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Figure 6.10: The estimate of the wind speed

vw(k): same simulation conditions as in fig-

ure 6.5, but with standard measurement noise

present in the outputs.
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Figure 6.11: The estimate of the pitch actu-

ator gain σ(k): same simulation conditions as

in figure 6.6, but with standard measurement

noise present in the outputs.

To illustrate the importance of the choice of the random walk size Ψ of the pitch actuator
gain σ(k), the experiment in figure 6.11 is repeated with a smaller value of Ψ = 0.00005.
The estimate of σ(k) is shown in figure 6.13. The smaller step size results in slower fault
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tracking after the change at k = 500, therefore fault detection is slower. However, there is
better fault isolation: before the fault occurrence and for k > 650, the estimated σ(k) is a
better approximation of the simulated σ(k), when compared to the result in figure 6.11. The
overall VAF between simulated and estimated fault is 83.7%, due to the larger mismatch for
500 < k < 650.
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Figure 6.12: The numerical derivative

σ̇est(k) of the estimated σest(k) shown in fig-

ure 6.11.
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Figure 6.13: Simulation as in figure 6.11, but

σest(k) has a smaller random walk size Ψ =
0.0005.

Analysis of the results

The discrete-time Kalman filter algorithm, described in section 6.1, was used to estimate both
the wind speed vw(k) and the pitch actuator gain σ(k). The wind speed and actuator gain
were defined as random walking variables, with random walk sizes Qvw and Ψ, respectively,
and included in an augmented system state.

It was found, that the algorithm has two tuning parameters: the random walk sizes of
the wind speed and the pitch actuator gain. It was shown that it is possible to tune these
parameters in such a way, that an abrupt fault in the pitch actuator gain can be detected,
isolated and identified. Only the MIMO case was considered: the measurements of ẍnd and
∆Ωr are used in the algorithm. An abrupt change in the pitch actuator gain σ was simulated.

Without measurement noise present in the system outputs, very good estimates were
obtained of the wind speed vw(k), the pitch actuator gain σ(k) and the turbine states. It was
demonstrated that the numerical derivative σ̇(k) can be used to for quick fault detection, and
that the estimate of the pitch actuator σ(k) can be used for fault isolation and identification.

With standard measurement noise present in the system outputs, the quality of the es-
timates deteriorated. It was shown, that tuning the parameters Qvw and Ψ improves the
quality of the estimates. These parameters must be tuned to a lower value, so that less free-
dom is allowed to the estimates. A reliable estimate of the pitch actuator gain σ(k) could
be obtained, but the measurement noise results in a more noisy estimate. Therefore, the nu-
merical derivative σ̇(k) is more noisy as well, so it is less reliable for FDI purposes. However,
the estimated pitch actuator gain is a reliable indicator of a change in the real actuator gain
σ(k), even in the presence of measurement noise.
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6.2 The Kalman filter as a least squares problem

In this section, the Kalman filter formulation is written as a least mean squares (LMS)
problem, in analogy with Verdult & Verhaegen (2001). This LMS framework is used in
sections 6.3 and 6.4, where new methods are introduced to detect an unknown actuator gain
σ(k).

6.2.1 A general covariance representation

Consider the LTI system (A.3)-(A.4), as defined in appendix A.2.

x(k + 1) = Ax(k) + Bu(k) + w(k)

y(k) = Cx(k) + Du(k) + v(k)

where the covariance matrices of the process noise v(k) and measurement noise w(k) are
defined as:

E

[
v(k)
w(k)

] [
v(j)T w(j)T

]
=
[
R(k) S(k)T

S(k) Q(k)

]
∆(k − j) (6.17)

where E[·] denotes the statistically expected value and ∆(k) the unit pulse. Suppose that an
estimate x̂(0|−1) of the initial state x(0) is available, along with its covariance matrix P (0|−1).
Furthermore, suppose that the initial state x(0) is a random variable which is independent of
w(k) and v(k) and has a mean value x̂(0| − 1) and covariance matrix P (0| − 1). The upper
or lower triangular matrix S(0| − 1) is the Cholesky factor of P (0| − 1). This yields:

E[x(0)] = x̂(0| − 1)

E
[(

x(0) − x̂(0| − 1)
)(

x(0) − x̂(0| − 1)
)T ] = P (0| − 1)

= S(0| − 1)S(0| − 1)T

In Verhaegen & Verdult (2001), a general covariance representation is introduced for the
statistical information of the random variables. To describe x(0), an auxiliary stochastic
variable ũ(k) � (0, I) is introduced. Using the Cholesky factor S(0| − 1), this yields:

x̂(0| − 1) = x(0) + S(0| − 1)ũ(0) (6.18)

If all covariance matrices in (6.17) are positive definite, a similar representation can be intro-
duced for the measurement noise v(k) and the process noise w(k):[

v(k)
w(k)

]
=
(

R(k)1/2 0
X(k) Qx(k)

)[
ṽ(k)
w̃(k)

]
with

[
ṽ(k)
w̃(k)

]
� (0, I) (6.19)

and the matrices X(k) and Qx(k) satisfying

X(k) = S(k)R(k)−T/2 (6.20)

Qx(k) = Q(k) − S(k)R(k)−1S(k)T (6.21)

It is assumed that there is no cross correlation between v(k) and w(k), so S(k) = 0, simplifying
(6.20)-(6.21) into

X(k) = 0 (6.22)

Qx(k) = Q(k) (6.23)
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6.2.2 The least squares problem

The general covariance representation (6.18) containing the statistical information of the
initial state can now be combined with the state equations (A.3)-(A.4), as shown in Verhaegen
& Verdult (2001). With S(k) = 0, all this information can be represented together for
k = 0, 1, .., N :

x̂(k|k − 1) = x(k) + S(0|k − 1)ũ(0) (6.24)

y(k) − Du(k) = Cx(k) + R(k)1/2ṽ(k) (6.25)

−Bu(k) = Ax(k) − x(k + 1) + Q1/2w̃(k) (6.26)

The left hand side of the equations (6.24)-(6.26) contains all known information, and the
right hand side contains the unknown quantities and the noise contributions. In Verhaegen
& Verdult (2001), the D matrix was assumed zero, which is not the case for the wind turbine
system model. It can be seen in (6.25) that the term Du(k) appears as an offset of the output
vector y(k). The equations (6.24)-(6.26) can be written as a least squares problem:
 x̂(k|k − 1)

y(k) − Du(k)
−Bu(k)


 =


In 0

C 0
A −In


[ x(k)

x(k + 1)

]
+


S(k|k − 1) 0 0

0 R(k)1/2 0
0 0 Q(k)1/2




 ũ(k)

ṽ(k)
w̃(k)


(6.27)

Let this be denoted as
m(k) = F (k)ξ(k) + L(k)µ(k) (6.28)

Duncan & Horn (1972) showed that the state estimates can be obtained by minimizing

min
ξ

µT µ (6.29)

Verdult & Verhaegen (2001) solve this minimization problem by exploiting the sparseness
of the matrices F (k) and L(k). This leads to a recursive procedure. Assuming invertibility of
L(k), which is always the case if there is no cross correlation between v(k) and w(k), solving
(6.29) is equivalent to minimizing

‖L−1(k)F (k)ξ(k) − L−1(k)m(k)‖2
2 (6.30)

Verdult & Verhaegen (2001) use the QR decomposition

L−1(k)F (k) = T (k)R(k) = T (k)


R̄(k) Ḡ(k)

0 S(k|k + 1)−1

0 0


 (6.31)

where T (k) is an orthogonal matrix, to rewrite the minimization problem (6.30) as

∣∣∣ [R̄(k) Ḡ(k)
0 S(k + 1|k)−1

] [
x(k)

x(k + 1)

]
−
[

c̄(k)
c(k + 1)

] ∣∣∣2
2

(6.32)

with

c̄(k) = [In 0n×(n+�)]T (k)T L(k)−1m(k)

c(k + 1) = [0n×n In 0n×�]T (k)T L(k)−1m(k)
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The solution to this set of equations only depends on measurements up to time instant k,
therefore it equals the one-step ahead predictor x̂(k + 1|k) of the state and the measurement
update x̂(k|k) of the state:

x̂(k + 1|k) = S(k + 1|k)c(k + 1)

x̂(k|k) = R̄(k)−1
(
c̄(k) − Ḡ(k)x̂(k + 1|k)

)
The one-step ahead predictor x̂(k + 1|k) and the Cholesky factor S(k + 1|k) can be extracted
from R(k) in (6.31), and they can be used to initialize the LMS problem in the next time
step.

A more direct way to solve (6.30) is obtained, when (6.31) remains written as

L−1(k)F (k) = T (k)R(k)

The minimization problem (6.30) can then be reduced to

min
ξ

‖R(k)ξ(k) − T (k)T L−1(k)m(k)‖2
2 (6.33)

which allows ξ(k) to be found:

ξ(k) = R†(k)T (k)T L−1(k)m(k) (6.34)

where the superscript † stands for the left Penrose-Moore pseudo-inverse of the matrix R(k),
denoted as R†(k), given by (RT (k)R(k))−1RT (k).
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6.3 The Kalman filter over a time window

This section introduces a new method to identify the unknown pitch actuator gain σ(k),
which is based on the least squares formulation of the Kalman filter problem described in
section 6.2. A moving time window w is chosen, and the unknown pitch actuator gain σ(k) is
considered as a constant during this time window. The Kalman filter formulation as a least
squares problem is then rewritten in a way, that allows to make an estimate of σ(k) as an
average value during this time window. Only the MIMO setup is considered: the algorithm
uses the measurements y1 = ẍnd and y2 = ∆Ωr.

6.3.1 The algorithm

Recall the wind turbine system (6.10)-(6.11) with the wind speed vw(k) included in an aug-
mented state, and the unknown pitch actuator gain denoted as σ(k):

[
x(k + 1)
vw(k + 1)

]
=
[
A Bh

0 1

] [
x(k)
vw(k)

]
+
[
B

0

]
σ(k)u(k) +

[
Q1/2 0

0 Q
1/2
vw

] [
w̃(k)

w̃vw(k)

]
[
y1(k)
y2(k)

]
=
[
C1 Dh

C2 0

] [
x(k)
vw(k)

]
+
[
D

0

]
σ(k)u(k) + R1/2ṽ(k)

This augmented system can be denoted in a more compact way:

x̆(k + 1) = Ăx̆(k) + B̆σ(k)u(k) + Q̆1/2w̆(k) (6.35)

y(k) = C̆x̆(k) + D̆σ(k)u(k) + R1/2ṽ(k) (6.36)

with the augmented state vector x̆(k) ∈ R
n+1. The least squares problem for the augmented

system (6.35)-(6.36) can be written in analogy with (6.27):


 x̂(k|k − 1)

y(k) − D̆σ(k)u(k)
−B̆σ(k)u(k)


 =


In+1 0

C̆ 0
Ă −In+1


[ x(k)

x(k + 1)

]

+


S(k|k − 1) 0 0

0 R(k)1/2 0
0 0 Q̆(k)1/2




 ũ(k)

ṽ(k)
w̆(k)


 (6.37)

A time window of size w ∈ N
+ can now be defined. The LMS problem (6.37) is then

rewritten for a moving time window as the large LMS problem (6.38) that contains past and
present input data u(k −w + 1), . . . , u(k) and output data y(k −w + 1), . . . , y(k). This LMS
problem can be solved to estimate the turbine states and the wind speed, and it also yields
an estimate of the pitch actuator gain σ as an average value during the time window w.

In comparison with (6.37), this requires that the terms −D̆σ(k)u(k) and −B̆σ(k)u(k) for
all k ∈ [k −w + 1, k] are moved to the right hand side of the LMS problem (6.38), of which a
compact notation is shown in (6.39). The elements D̆u(k) and B̆u(k) for all k ∈ [k−w +1, k]
appear in the matrix that corresponds to F (k) in (6.39). The unknown pitch actuator gain
σ(k) is assumed to be constant during the time window w, and appears as the last term of
the vector that corresponds to ξ(k) in (6.39).
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x̂(k − w + 1|k − w)
y(k − w + 1)

0
y(k − w + 2)

0
...

y(k)
0




=




In+1 0 0 · · · 0 0 0
C̆ 0 0 · · · 0 0 D̆u(k − w + 1)
Ă −In+1 0 · · · 0 0 B̆u(k − w + 1)
0 C̆ 0 · · · 0 0 D̆u(k − w + 2)
0 Ă −In+1 · · · 0 0 B̆u(k − w + 2)
...

...
...

. . .
...

...
...

0 0 0 · · · C̆ 0 D̆u(k)
0 0 0 · · · Ă −In+1 B̆u(k)







x(k − w + 1)
x(k − w + 2)
x(k − w + 3)

...
x(k)

x(k + 1)
σ(k)




+




Ŝ(k − w + 1|k − w) 0 0 0 0 · · · 0 0
0 R1/2 0 0 0 · · · 0 0
0 0 Q̆1/2 0 0 · · · 0 0
0 0 0 R1/2 0 · · · 0 0
0 0 0 0 Q̆1/2 · · · 0 0
...

...
...

...
...

. . .
...

...
0 0 0 0 0 · · · R1/2 0
0 0 0 0 0 · · · 0 Q̆1/2







ũ(k − w + 1)
ṽ(k − w + 1)
w̆(k − w + 1)
ṽ(k − w + 2)
w̆(k − w + 2)

...
ṽ(k)
w̆(k)




(6.38)

As mentioned, this large LMS problem can be denoted in a compact way as (6.39), in analogy
with (6.28):

m(k) = F (k)ξ(k) + L(k)µ(k) (6.39)

This LMS problem can be solved in the exact same way as (6.29) in section 6.2. The
solution yields the measurement update x̂(k−w + 1|k−w) and the one-step ahead predictor
x̂(k − w + 2|k − w + 1), as well as σ(k), based on the past and present inputs and outputs
during the selected time window. Effectively, the state estimates are calculated with a delay
of w sample times, in order to obtain an average fault estimate over the selected time window.
At the end of a recursive procedure from k = 1, . . . , N , estimates of the turbine states and
the wind speed are available over the interval k = 1, . . . , N −w, as well as an estimate of the
pitch actuator gain σ over the interval k = w + 1, . . . , N .

The solution ξ(k) of the minimization problem (6.39) and the matrix R(k) from the QR
factorization have the structure shown in (6.40)-(6.41). Analogous to Verdult & Verhaegen
(2001), the one-step ahead predictor x̂(k − w + 2|k − w + 1) can be taken from x(k − w + 2)
in ξ(k) in (6.41) and the measurement update x̂(k−w + 1|k−w + 1) from x(k−w + 1). The
last element of the vector ξ(k) is the estimate of σ(k), as an average over the time window
k − w + 1, . . . , k.
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R(k) =




R̄k−w+1(k) Ḡk−w+1(k) 0 0 0 Σk−w+1(k)

0 R̄k−w+2(k) Ḡk−w+2(k) 0 0
...

0 0
. . . . . . 0

...

0 0 0 R̄k(k) Ḡk(k)
...

0 0 0 0 R̄k+1(k) Σk+1(k)
0 0 0 0 0 0



(6.40)

ξ(k) =




x(k − w + 1)
x(k − w + 2)

...
x(k)

x(k + 1)
σ(k)




(6.41)

The matrix R(k) shown in (6.40) consists of a block diagonal matrix, containing matrices
R̄(k) and Ḡ(k) analogous to (6.31), and an extra column which contains the vector Σ ∈
R

(w+1)·(n+1)+1 that contains the R factorization terms corresponding to σ(k), which are not
used for analysis. In analogy with Verdult & Verhaegen (2001), R̄k−w+2(k) is equal to S(k −
w+2|k−w+1)−1, the inverse of the Cholesky factor of the covariance matrix of the predicted
state x̂(k − w + 2|k − w + 1) that is needed to initialize the next time step.

6.3.2 Experimental issues

The Kalman filter over a time window w, as described in section 6.3.1, was implemented in
the m-file linkalwin.m. It was demonstrated in experiments that this algorithm can be used
to obtain an estimate of the faulty actuator gain σ(k). However, it turned out to be difficult
to obtain reliable estimates. To understand this, the algorithm must be compared to the
regular discrete-time Kalman filter algorithm that is described in section 6.1.

If the augmented wind turbine system (6.10)-(6.11) is solved with a regular discrete-time
Kalman filter, the noise covariance Q on the state estimates can be set to zero. As can be
seen in (6.6), it is not required that the matrix Q is invertible. The augmented state variables
vw(k) and σ(k) have random walk parameters Qvw and Ψ, respectively. These random walk
parameters can be tuned in such a way that both vw(k) and σ(k) can be estimated despite
the presence of measurement noise.

In the Kalman filter algorithm over a moving time window, several problems arise. First
of all, unlike in the regular discrete-time Kalman filter formulation, no tunable step size
is available in the Kalman filter over a moving time window. Such a step size effectively
introduces a memory functionality in the estimate of σ(k), since every next estimate is only
allowed to deviate from the previous estimate to a certain extent. In the Kalman filter (6.38)
over a time window, the pitch actuator gain σ(k) is estimated as an average value during the
time window w, without a constraint on the allowed step size.

Secondly, the covariance matrix Q of the noise on the estimated states cannot be set to
zero in the Kalman filter algorithm over a time window. The matrix L(k) is not invertible for
Q = 0, so that the minimization problem (6.39) cannot be solved. The tuning parameters of
the LMS problem (6.38) are therefore the covariance matrix Q of the turbine system and the
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covariance matrix Qvw of the augmented wind state. This means that the Kalman filter over
a time window has n + 1 tuning parameters, with the system order n = 10, while the regular
discrete-time Kalman filter has only two. It is therefore difficult to tune the parameters in
such a way that reliable estimates are obtained for the turbine states, the wind speed and
the pitch actuator gain. It was found that a large value of Q yields a biased estimate of σ. A
possible explanation is that the actual disturbance by the wind signal is non-white and has a
small non-zero mean value, which results in an offset in the estimate of σ. When Q is large,
this offset is multiplied with a larger value so that it shows itself clearly on the estimate of σ.
When a smaller value of Q is taken, this bias is not visible. However, it was found that the
estimate of σ is very noisy in this case, with a lot of variation. Two experiments will be used
to illustrate this behavior.

Experiments

The same abrupt fault as in section 6.1 was simulated: the pitch actuator gain σ(k) changes
from 1 to 2/3 at time instant k = 500. Standard measurement noise is present in the turbine
system outputs, as described in section 3.6. The first experiment uses a relatively small value
of Q: the diagonal matrix denoted in (6.42), with q = 1.0 · 10−3.

Q = q · diag







1.5 · 10−3

1.5 · 10−3

7.0 · 10−5

5.5 · 10−4

2.1 · 10−3

4.5 · 10−7

8.2 · 10−7

1.5 · 10−7

1.2 · 10−7

2.2 · 10−8







(6.42)

The window size w was set to 25, and Qvw = 0.1. This yields the wind estimate shown in
figure 6.14, which has a VAF between real and estimated wind speed of 99.5%. The estimate
of σ(k) is shown in figure 6.15. Though the VAF between real and simulated σ was found to
be 91.9%, it can be seen that the estimated σ(k) is quite noisy. These rapid variations have
the result that the numerical derivative of σ(k) is not a good indicator for a fault occurrence:
the derivative is too noisy.

A discrete-time low-pass filter (6.43) was implemented in analogy with Kanev & Verhaegen
(2000), yielding a filtered value σfilt(k) of the estimate σ(k). This filtered estimate σfilt(k+1)
is mainly based on the previous filtered estimate σfilt(k), and not on the actual estimate σ(k),
so that an artificial restriction on the step size of the estimate is introduced.

σfilt(k + 1) = 0.98 · σfilt(k) + 0.02 · σ(k) (6.43)

The filtered estimate σfilt(k) is shown as the dashed line in figure 6.15. It follows the
simulated σ(k) reasonably well, but reacts slowly to a change. The following VAF between
real and estimated turbine states (which are not plotted) was found (in %):

V AF (xe, xr) =
[

99.8 99.7 98.1 99.6 99.8 97.3 98.2 85.4 83.7 99.2
]T
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6.3 The Kalman filter over a time window
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Figure 6.14: First experiment with the linear

Kalman filter over a time window: the esti-

mate of the wind speed vw(k). Here, w = 25
and Q is defined as (6.42) with q = 1.0 · 10−3.
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Figure 6.15: First experiment with the lin-

ear Kalman filter over a time window: sim-

ulated pitch actuator gain (dotted), the esti-

mated pitch actuator gain σ(k) (solid) and the

filtered estimate σfilt(k) (6.43). Here, w = 25
and Q is defined as (6.42) with q = 1.0 · 10−3.

A second experiment, with larger values of Q and Qvw , yields an example of a biased fault
estimator. The value of q in (6.43) was set to 1; with Qvw = 1.4 and w = 30, this yields the
estimate of σ(k) shown in figure 6.16. This is a biased estimate, since the estimated σ(k) has
an offset: it is approximately 0.1 larger than the simulated value, for all k.

Apart from the difficult tuning and the fact that there is no restriction on the step size
of σ(k), there is a third problem that complicates practical application of the Kalman filter
algorithm over a time window. The computation time is very large: it was found to be pro-
portional to w3, the cube of the window size. This is a logical result, since a QR factorization
was used to obtain the solution ξ(k) for the minimization problem (6.39). Golub & Loan
(1989) show that the required computation time for QR factorization is proportional to the
cube of the rank of the matrix F (k) in (6.39), and the rank of the (full-rank) matrix F (k) is
indeed proportional to the window size. A more efficient QR factorization algorithm can be
implemented that is proportional to the square of the window size, as described in Golub &
Loan (1989), but this still yields a heavy computational burden. The computation time Tcpu

that required for one cycle of the Kalman filter problem over a time window is shown in fig-
ure 6.17, with the empirical approximation (6.44). As a comparison, the regular discrete-time
Kalman filter has a Tcpu of 5.4 · 10−4s for one cycle of the algorithm.

Tcpu = 5.4 · 10−5 · w3 (6.44)

It follows from (6.44) that the computation time is already larger than the sample time
Ts = 0.1s for a window size of 15; this size turns out to be too small to yield a reliable estimate
of σ(k). A larger window size w reduces the variation in the estimate, but the results were
never as reliable as with the regular discrete-time Kalman filter described in section 6.1.
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Analysis of the results

In section 6.2, the Kalman filter algorithm was formulated as an LMS problem. This LMS
framework was rewritten in this section into a linear LMS problem, defined during a moving
time window of size w. Past and present input and output data were used to estimate the
pitch actuator gain as an average value during this time window. Only the MIMO case was
considered: the algorithm uses measurements of ẍnd and ∆Ωr. Standard measurement noise
was present in the system outputs, and an abrupt change in the pitch actuator gain σ was
simulated.

It was demonstrated that this algorithm can be used to estimate the states of the wind
turbine system, as well as the wind speed and the pitch actuator gain. However, it turned out
that the algorithm is not very promising for practical application: no real-time application is
to be expected.

In comparison with the discrete-time Kalman filter algorithm that is described in sec-
tion 6.1, the Kalman filter over a time window has a much higher computation time for one
cycle of the algorithm. This computation time Tcpu is proportional to the cube of the window
size w, and a relatively large value of w is needed. Furthermore, since all values of the state
noise covariance matrix Q have to be non-zero, the algorithm has 11 tuning parameters in-
stead of 2. Finally, there is no limited step size for the estimate of σ, that serves as a memory
to prevent large steps in the subsequent estimates. This results in an algorithm that is very
difficult to tune: either a noisy estimate of the pitch actuator gain σ(k) is obtained, or the
estimate is biased. A filtered version of this noisy estimate can be used to detect and isolate
the fault; considering the fact that a regular discrete-time Kalman filter doesn’t yield a noisy
estimate, it can be stated that the Kalman filter over a time window first creates a problem,
which is then partly solved. It is clear that this method is not worth the computational effort.
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6.4 A nonlinear Kalman problem

6.4 A nonlinear Kalman problem

In this section, another new method to estimate the unknown pitch actuator gain σ(k) is
presented. Analogous to section 6.3.1, the wind speed vw(k) is included in an augmented
system state. A nonlinear LMS problem with a particular structure can be defined over a
moving time window w, which can be solved as a so-called separable least squares (SLS)
problem. A nonlinear optimization scheme is used to estimate an optimal value σ̂opt as an
average over the time window w. This σ̂opt reduces the nonlinear LMS problem to a linear
LMS problem, from which the turbine states and the wind speed can be estimated. Only the
MIMO setup is considered: the algorithm uses the measurements y1 = ẍnd and y2 = ∆Ωr.

6.4.1 The algorithm

Recall the state-space representation (4.10)-(4.11) of the transfer function from u1(k) = vw(k)
to the system outputs y(k). In analogy with section 6.1.1, the substitutions u1(k) = vw(k),
B1 = Bh and B2 = B are made, as well as D11 = Dh and D12 = D. The unknown pitch
actuator gain is represented as σ, which yields the state-space representation (6.45)-(6.46):

[
x(k + 1)
x̄(k + 1)

]
=
[
A − BσD̄C2 −BσC̄

B̄C2 Ā

] [
x(k)
x̄(k)

]
+
[
Bh

0

]
vw(k) (6.45)[

y1(k)
y2(k)

]
=
[
C1 − DσD̄C2 −DσC̄

C2 0

] [
x(k)
x̄(k)

]
+
[
Dh

0

]
vw(k) (6.46)

Measurement noise v(k) and process noise w(k) is added, in analogy with section 6.1.
The wind speed vw(k) is defined as a random walking variable as in (6.9), and included in an
augmented state. The the noise term on the controller state is defined as a zero-mean unit
variance term w̃c(k) � (0, I), multiplied with the square root of the covariance matrix Qc.
This allows (6.45)-(6.46) to be rewritten as (6.47)-(6.48):


 x(k + 1)

x̄(k + 1)
vw(k + 1)


 =


A − BσD̄C2 −BσC̄ Bh

B̄C2 Ā 0
0 0 1




 x(k)

x̄(k)
vw(k)


+




Q1/2 0 0
0 Q

1/2
c 0

0 0 Q
1/2
vw




 w̃(k)

w̃c(k)
w̃vw(k)




(6.47)[
y1(k)
y2(k)

]
=
[
C1 − DσD̄C2 −DσC̄ Dh

C2 0 0

] x(k)
x̄(k)
vw(k)


+

[
R

1/2
1 0
0 R

1/2
2

] [
ṽ1(k)
ṽ2(k)

]
(6.48)

This can be denoted in a more compact way:

x̆(k + 1) = Ă(σ)x̆(k) + Q̆w̆(k) (6.49)

y(k) = C̆(σ)x̆(k) + R(k)1/2ṽ(k) (6.50)

with the appropriate definitions of the augmented system matrices in (6.47)-(6.48), and the
augmented state vector x̆ ∈ R

n+2. In analogy with (6.27), this can be written as the LMS
problem (6.51), where x̂(k|k−1) is the estimate of x̆(k) from the prior time step, and S(k|k−1)
the Cholesky factor of the covariance matrix that is associated with x̂(k|k − 1).
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x̂(k|k − 1)

y(k)
0


 =


 In+2 0

C̆(σ) 0
Ă(σ) −In+2


[ x̆(k)

x̆(k + 1)

]
(6.51)

+


S̆(k|k − 1) 0 0

0 R(k)1/2 0
0 0 Q̆(k)1/2




 ũ(k)

ṽ(k)
w̆(k)




Note that the controller output u(k) is not included in (6.51): the behavior of the entire
closed-loop system is considered, so that u(k) has become an internal variable of the closed-
loop system. The controller output u(k) is denoted as ū2(k) in section 4.1, and (4.7) shows
that it can be reconstructed as a linear combination of the controller state x̄(k) and the
turbine system states x(k).

A similar approach as in section 6.3.1 can now be applied. The LMS problem (6.51) can
be defined during a moving time window of size w ∈ N

+, where the pitch actuator gain σ(k)
is assumed to have the constant value σ during this time window.




x̂(k − w + 1|k − w)
y(k − w + 1)

0
y(k − w + 2)

0
...

y(k)
0




=




In+2 0 0 · · · 0 0
C̆(σ) 0 0 · · · 0 0
Ă(σ) −In+2 0 · · · 0 0

0 C̆(σ) 0 · · · 0 0
0 Ă(σ) −In+2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · C̆(σ) 0
0 0 0 · · · Ă(σ) −In+2







x̆(k − w + 1)
x̆(k − w + 2)
x̆(k − w + 3)

...
x̆(k)

x̆(k + 1)



(6.52)

+




S̆(k − w + 1|k − w) 0 0 0 0 · · · 0 0
0 R1/2 0 0 0 · · · 0 0
0 0 Q̆1/2 0 0 · · · 0 0
0 0 0 R1/2 0 · · · 0 0
0 0 0 0 Q̆1/2 · · · 0 0
...

...
...

...
...

. . .
...

...
0 0 0 0 0 · · · R1/2 0
0 0 0 0 0 · · · 0 Q̆1/2







ũ(k − w + 1)
ṽ(k − w + 1)
w̆(k − w + 1)
ṽ(k − w + 2)
w̆(k − w + 2)

...
ṽ(k)
w̆(k)




This LMS problem can be denoted as:

m(k) = F (σ)ξ(k) + L(k)µ(k) (6.53)

According to Duncan & Horn (1972) and Verdult & Verhaegen (2001), the following
minimization leads to the solution:

min
ξ,σ

‖L−1(k)F (σ)ξ(k) − L−1(k)m(k)‖2
2 (6.54)
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Unfortunately, finding the solution for (6.53) is not straightforward: (6.54) is a nonlinear
minimization problem, which has the following general structure:

min
ξ,σ

‖Y (k) − Φ(σ)X(k)‖2
2 (6.55)

This minimization problem is linear in X(k) and nonlinear in σ. This means that for a given
value of σ, it reduces to an ordinary linear LMS problem.

This class of problems was described by Golub & Pereyra (1973), and the so-called sepa-
rable least-squares (SLS) method was presented as a solution. A thorough description of the
method is given by Verdult (2002). The problem can be solved in two steps. In the first step,
a nonlinear minimization problem in σ is solved, yielding an optimal σ̂opt for the minimization
problem described in (6.55). A theorem by Golub & Pereyra (1973) shows, that solving (6.55)
is equal to solving (6.56) in order to find the optimal value σ̂opt of the faulty pitch actuator
gain σ.

σ̂opt = min
σ

‖Y (k) − Φ(σ)
(
Φ(σ)T Φ(σ)

)−1Φ(σ)T Y (k)‖2
2 (6.56)

The minimization problem (6.56) is solved with a nonlinear optimization scheme to find
σ̂opt. Subsequently, σ̂opt can be substituted into (6.53) in order to reduce it to (6.28):

m(k) = F (k)ξ(k) + L(k)µ(k)

This is an ordinary linear LMS problem that can be solved in the same way as (6.29) in
section 6.2.

6.4.2 Experimental issues

In order to find the optimal σ̂opt, the minimization problem (6.56) was solved with Matlab’s
nonlinear optimization function lsqnonlin.m. This required a function jnsig.m to be made,
that creates the output vector JN (σ) that represents the cost function of (6.56) as a function
of σ:

JN (σ) = Y (k) − Φ(σ)
(
Φ(σ)T Φ(σ)

)−1Φ(σ)T Y (k) (6.57)

The function lsqnonlin.m is used to minimize (6.56), with the initial estimate σ(k|k − 1)
set to 1 for the first time step. The upper and lower boundary for σ were set in advance, so
that 0 < σ < 1.2. The result of this minimization is an optimal value σ̂opt(k) that can be used
as the initial estimate for σ in the next time step; compared with initializing σ = 1 at every
time step, this saves calculation time. Furthermore, the optimal value σ̂opt is substituted into
(6.52), so that it can be solved as an ordinary linear LMS problem. This yields estimates for
the turbine and controller states, as well as an estimate for the wind speed. The complete
implementation of this procedure can be found in the m-file nonlinkalwin.m.

It was found that the nonlinear Kalman filter problem during a moving time window
requires even more computation time than the linear Kalman filter problem during a moving
time window that was described in section 6.3.2. For a certain window size w, both algorithms
solve a QR factorization of matrices of comparable size, but before this, the nonlinear Kalman
filter problem solves a nonlinear optimization problem to estimate the pitch actuator gain σ.
Furthermore, the nonlinear Kalman filter algorithm has even more tuning parameters: instead
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of two tuning parameters in the regular discrete-time Kalman filter of section 6.1 and n + 1
in the linear Kalman filter problem during a time window, the nonlinear problem has n + 2
tuning parameters. The reason is that the controller state is included, so that its covariance
Qc must be tuned, as it is not allowed to be zero. Similar to the linear Kalman filter problem
over a time window, the nonlinear Kalman filter algorithm yields a biased fault estimate when
relatively high values of Q, Qc and Qvw are used. Tuning the parameters was found to be very
difficult, as lower parameter values yield an estimate that is more noisy, so that the estimated
pitch actuator gain σ̂opt sometimes lies on the upper (or lower) boundary.

Experiment

An example of a biased estimate of σ is obtained, when Q is chosen as in (6.43) with q = 1,
Qvw = 1.4, Qc = 0.001 and w = 30. The estimated wind speed is shown in figure 6.18,
with corresponding VAF of 94.1%. The pitch actuator gain is shown in figure 6.19, a biased
estimate with corresponding VAF of 78.9%, that sometimes lies on the upper boundary.
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Figure 6.18: The estimate of the wind speed

vw(k) with the nonlinear Kalman filter algo-

rithm, when a relatively large value of Q is

chosen, and w = 30.

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

estimated pitch actuator gain σ (solid), and simulated σ (dotted)

time (k)

σ

Figure 6.19: The dotted line represents the

simulated pitch actuator gain σ, the solid line

shows the biased estimate of the pitch actua-

tor gain σ that was obtained with the nonlin-

ear Kalman filter algorithm.

Analysis of the results

The nonlinear Kalman filter problem defined over a moving time window is not a very reliable
method to obtain estimates of the wind turbine states, the wind speed and the pitch actuator
gain. It is even slower than the linear Kalman filter algorithm over a moving time window
presented in section 6.3.1: for a given window size w, it solves a linear LMS problem problem
of comparable size, but during each time cycle it performs an extra nonlinear minimization
procedure to estimate the pitch actuator gain. Similar to the linear Kalman filter over a time
window, there is no limited change rate for the estimated pitch actuator gain in the nonlinear
Kalman filter algorithm. Finally, tuning the nonlinear algorithm is even more difficult: the
controller state is included, which introduces the associated noise covariance Qc as an extra
tuning parameter.
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6.5 Conclusions

It was demonstrated that the nonlinear LMS problem can be used to estimate the states
of the wind turbine system, as well as the wind speed and the pitch actuator gain. Because
of the difficult tuning, either a biased estimate is found, or a noisy estimate that sometimes
lies on the upper (or lower) boundary. Clearly, this method is even more troublesome than
the linear Kalman filter over a time window and wastes even more computation time.

6.5 Conclusions

In this chapter, methods based on the Kalman filter were used to detect and identify an
unknown pitch actuator gain in a HAWT simulation model.

The discrete-time Kalman filter algorithm was shown to be a very powerful method to
estimate unknown variables in a wind turbine system, when the system representation of
the fault-free system is known. The unknown variables can be defined as random walking
variables and included in an augmented system state, so that they can be estimated by the
Kalman filter. Both system outputs ∆Ωr and ẍnd had to be used to obtain good results.

For the problem of identifying an unknown pitch actuator gain, it was shown that the
wind speed can be estimated to a high degree of accuracy, and that a reliable value of the
unknown pitch actuator gain can be estimated from closed-loop measurements, even when
measurement noise is present in the system outputs. The random walk sizes of the unknown
variables turned out to be important tuning parameters: lower values were required when
measurement noise was present in the system outputs, in order to reduce the freedom of the
estimates.

An alternative path that was explored turned out to be less promising. It was demon-
strated that the Kalman filter can be rewritten over a moving time window both as a linear
and a nonlinear LMS algorithm. The linear problem is based on the open-loop transfer func-
tion from the controller input to the system outputs. The nonlinear problem is based on
the closed-loop transfer function of the wind turbine system, where the unknown pitch ac-
tuator gain shows itself as a component fault that can be estimated by solving a nonlinear
minimization problem.

It was demonstrated that both methods can be used to estimate the pitch actuator gain
σ(k) as an average during the time window, as well as the turbine states and wind speed.
However, these algorithms are not very reliable and practical. The main shortcoming is the
lack of a tuning parameter that restricts the freedom of the fault estimate, and the fact that
the algorithms have too much other tuning parameters. Therefore, there is too much freedom
on the estimate of σ(k), even for a large window size. It was demonstrated that these problems
result in either noisy or biased estimates. Finally, the computation time for these algorithms
is very high, especially for the nonlinear algorithm. Considering that the estimation results
were worse than with the regular discrete-time Kalman filter algorithm, it can be concluded
that these methods are of little practical relevance.
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Chapter 7

Multiple-model estimation

7.1 Introduction

In this chapter, the hybrid estimation approach to fault detection and identification is intro-
duced. The general idea is to describe the state of a system subject to failures or parameter
changes as a hybrid dynamic state; this concept is explained in section 7.2.

The mainstream and most natural approach for hybrid estimation is one based on the use
of multiple models. The operating range of the system is divided into several system modes,
yielding a set of equations to describe all relevant system behavior. A bank of filters is run
in parallel, each matching the current system mode to a particular system mode. The bank
of filters may consist of any single-model based filter; the Kalman filter is an obvious choice.
The probability is calculated that each mode is in effect; these probabilities are then used as
weighting factors for the filter’s state estimates to calculate an overall state estimate. The
system behavior may change if a fault occurs, which may result in updated weighting factors
for the system modes. These weighting factors can therefore be used for FDI purposes: if the
probability of a fault mode exceeds the probability of the nominal mode to a certain extent,
it can be concluded that this fault mode is in effect.

Several multiple-model (MM) algorithms have been presented in literature, which have
different procedures for re-initialization of the filter banks, different switching schemes be-
tween modes and different ways of estimate fusion: how to obtain an overall state estimate as
a weighted combination of all estimates from the filter bank. Efe & Atherton (1997) success-
fully applied the Interacting Multiple-Model (IMM) algorithm of Bar-Shalom & Fortmann
(1988) to the industrial actuator benchmark for fault detection and isolation, presented by
Blanke et al. (1995). Zhang & Rong Li (1998) showed that the IMM approach has a supe-
rior performance for fault detection purposes, when compared to other multiple-model (MM)
algorithms such as the Generalized Pseudo-Bayesian approaches described in Maybeck &
Stevens (1999) and Griffin, Jr. & Maybeck (1997). The IMM approach has become a stan-
dard method for abrupt change detection: it was applied successfully for FDI in combination
with controller reconfiguration (Kanev & Verhaegen, 2000) and applied to target tracking
problems (Gustafsson, 2000).

In this chapter, it is investigated whether the IMM algorithm can be used to solve the
two FDI problems described in chapter 4: identification of the unknown blade pitch actuator
gain and the unknown blade pitch delay in a wind turbine system.
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7.2 Hybrid systems

As described by Rong Li (1996), there are two basic types of estimation, classified in terms of
the quantity to be estimated: parameter estimation and state/signal estimation. A parameter
usually refers to a constant (or slowly-varying) quantity while a state or signal refers to a
rapidly-varying quantity.

When estimation has to be done in the presence of structural uncertainty, when there is
an unknown structure or a random structural change, it is often possible to define a discrete
set of model descriptions to describe different behavior modes of the system. In this case,
there is a combined decision and estimation problem: a decision, which is a selection among
discrete alternatives, has to be made to determine the model currently in effect; after that,
the states of the system can be estimated in a continuous range. Hybrid estimation can
be seen as a unification of conventional estimation and decision (Rong Li, 1996). Before
a hybrid estimation approach can be applied, the overall system must be represented as a
hybrid system.

A stochastic hybrid system is a system which has both a continuous-valued base state and
discrete-valued structural/parametric uncertainty (Zhang & Rong Li, 1998). The components
of the base state x(k) are the usual state variables; the system mode is a mathematical
characterization of a certain behavior pattern or structure of the system. When hybrid
estimation is applied to a system subject to structural failures, the operating range of the
system is divided into several system modes: one system description for the nominal system
behavior, and several linear descriptions for each relevant fault scenario. Hybrid estimation
consists of estimating both the base state and the modal state; a jump from the nominal
system mode to a particular faulty system mode can be seen as detection of that particular
fault.

Zhang & Rong Li (1998) give a general linear description of a stochastic hybrid system,
for a hybrid system with a D matrix equal to zero. With a non-zero D-matrix, the following
system is obtained:

x(k + 1) = A(k, m(k + 1))x(k) + B(k, m(k + 1))u(k) + (7.1)

T (k, m(k + 1))ξ(k, m(k + 1))

y(k) = C(k, m(k + 1))x(k) + D(k, m(k + 1))u(k) + η(k, m(k)) (7.2)

where the system mode sequence is a first-order Markov chain with transition probabilities

P{mj(k + 1)|mi(k)} = πij(k) ∀ mi, mj ∈ S (7.3)

and ∑
j

πij(k) = 1, i = 1, .., s. (7.4)

Here, x(k) ∈ R
nx is the base state vector, y(k) ∈ R

ny the mode-dependent measurement
vector, u(k) ∈ R

nu the control input vector; ξ(k) ∈ R
nξ and η(k) ∈ R

nη are independent
discrete-time process and measurement noises with means ξ̄(k) and η̄(k) and covariance ma-
trices Q(k) and R(k); m(k) is the discrete-valued modal state at time instant k, that denotes
the mode in effect during the sample period ending at k. πij is the transition probability from
mode mi to mode mj . The set S = {m1, m2, ..ms} is the set of all possible system modes.
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7.2 Hybrid systems

The overall state of the hybrid system (7.1)-(7.2) is called the hybrid state: it is defined
in a hybrid space R

nx × S, the Cartesian product of the continuous-valued base-state space
R

nx and the discrete model set S, the collection of the system’s modes.
The hybrid system (7.1)-(7.2) is also known as a jump-linear system (Gustafsson, 2000):

it has a linear behavior given the system mode, but it may jump from one system mode
to another at a random time. It can be seen from (7.2) that the base state measurements
are in general noisy and mode dependent. The mode information is embedded (i.e., not
directly measured) in the measurement sequence y(k); it is an indirectly observed Markov
chain (Zhang & Rong Li, 1998).

A necessary prerequisite for application of hybrid estimation with a multiple-model method
such as the IMM estimator is, that it is possible to design the set of models S = {m1, ..., mN},
which contains a model description Mj for every jth possible system mode, such that the set
of models describes the operating range of the hybrid system to a certain degree of accuracy.
Designing this model set is a complex task; there exists no systematic procedure for the choice
of S. From now on it is assumed that the model set is given for each particular fault detection
and identification problem.

Using this model set S, it is possible to approximate the hybrid system description (7.1)-(7.2)
by the following sets of equations, for j = 1, 2, . . . , N :

x(k + 1) = Aj(k)x(k) + Bj(k)u(k) + Tj(k)ξj(k) (7.5)

y(k) = Cj(k)x(k) + Dj(k)u(k) + ηj(k) (7.6)

The matrices Aj , Bj , Cj , Dj and Tj may be of different structure for different j; however, it is
assumed in this thesis that the state matrices have the same dimensions for all j = 1, 2, . . . , N .
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7.3 Interacting multiple-model estimator

The IMM estimator is considered to be one of the most cost-effective approaches to hybrid
estimation. It was first introduced by Bar-Shalom & Fortmann (1988), and first applied
to fault detection by Efe & Atherton (1997). It is a recursive algorithm; a clear overview
of one cycle is presented in Zhang & Rong Li (1998), see table 7.3 for an overview. For
implementation purposes, Kanev & Verhaegen (2000) present some practical aspects on model
set design and algorithm implementation.

The IMM algorithm consists of four steps, as can be seen in table 7.3:

1. Mixing of the estimates: the input to the filter matched to every jth particular
mode is obtained by mixing the estimates of all N filters at the previous time instant,
assuming that this particular mode is in effect at this time;

2. Model-conditional filtering: a Kalman algorithm cycle as described in section 6.1
is run in parallel for all N Kalman filters in the filter bank. A prediction of the next
state and covariance is made, and the current state is updated;

3. Mode probability update: Based on the model-conditional likelihood functions, the
mode probabilities for every mode are updated;

4. Combination of estimates: The overall state is calculated as a probabilistically
weighted sum of the updated state estimates of all filters.

According to Zhang & Rong Li (1998), the introduction of the IMM estimator proved
to be a great advance in MM estimation. When a non-interacting MM approach is used,
the single-mode-based filters run in parallel without mutual interaction. Such an approach is
quite effective in handling problems with an unknown structure, without structural change.
The IMM estimator also performs well in case of abrupt structural changes: it switches from
one model to another in a probabilistic manner. The single-model-based filters interact with
each other, which accounts for the superior performance.

The algorithm in table 7.3 is slightly modified. As mentioned before, Zhang & Rong Li
(1998) consider an LTI system with a zero D-matrix. For the wind turbine system, this is not
the case. This results in the term −Dj(k + 1)u(k + 1) as a correction for the output vector
y(k + 1) in the calculation of the measurement residual. Note that the residual covariance Sj

is a 2 by 2 matrix, so the matrix norm must be used instead of the vector norm, and a matrix
exponent must be used in the likelihood function.

Apart from the model set S, the only design parameter of the IMM algorithm is the
transition probability matrix πij . This must be defined such, that the probability that the
system stays in the same mode is relatively high. More details on the choice of πij will be
given on the basis of the experimental results in the following sections.
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7.3 Interacting multiple-model estimator

1. Mixing of the estimates (for j = 1, ..., N):

predicted mode probability: µj(k + 1|k) =
N∑

i=1

πijµi(k)

mixing probability: µi|j = πijµi(k)/µj(k + 1|k)

mixing estimate: x̂0
j (k|k) =

N∑
i=1

x̂i(k|k)µi|j(k)

mixing covariance: P 0
j (k|k) =

N∑
i=1

{Pi(k|k)+

[x̂0
j (k|k) − x̂i(k|k)][x̂0

j (k|k) − x̂i(k|k)]T }µi|j(k)
2. Model-conditional filtering (for j = 1, ..., N):
predicted state: x̂j(k + 1|k) = Aj(k)x̂0

j (k|k) + Bj(k)u(k) + Tj(k)ξ̄j(k)
predicted covariance: Pj(k + 1|k) = Aj(k)P 0

j (k|k)Aj(k)T + Tj(k)Qj(k)Tj(k)T

measurement residual: νj(k + 1) = y(k + 1) − Cj(k + 1)x̂j(k + 1|k)
−Dj(k + 1)u(k + 1) − η̄j(k + 1)

residual covariance: Sj(k + 1) = Cj(k + 1)Pj(k + 1|k)Cj(k + 1)T + Rj(k + 1)
filter gain: Kj(k + 1) = Pj(k + 1|k)Cj(k + 1)T Sj(k + 1)−1

updated state: x̂j(k + 1|k + 1) = x̂j(k + 1|k) + Kj(k + 1)νj(k + 1)
updated covariance: Pj(k + 1|k + 1) = Pj(k + 1|k) − Kj(k + 1)Sj(k + 1)Kj(k + 1)T

3. Mode probability update (for j = 1, ..., N):
likelihood function: Lj(k + 1) = 1√

|2πSj(k+1)|exp[−1
2νj(k + 1)T Sj(k + 1)−1νj(k + 1)]

mode probability: µj(k + 1) = µj(k+1|k)Lj(k+1)∑
i

µi(k + 1|k)Li(k + 1)

4. Combination of estimates:

overall state estimate: x̂(k + 1|k + 1) =
N∑

i=1

x̂i(k + 1|k + 1)µi(k + 1)

overall covariance: P (k + 1|k + 1) =
N∑

i=1

{Pi(k + 1|k + 1)+

[x̂(k + 1|k + 1) − x̂i(k + 1|k + 1)]×
[x̂(k + 1|k + 1) − x̂i(k + 1|k + 1)]T }µi(k + 1)

Table 7.1: One cycle of the IMM estimator.
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Multiple-model estimation

7.4 IMM estimation of an unknown pitch actuator gain

In this section it is verified whether the IMM algorithm described in section 7.3 can be used
to solve the FDI problem defined in section 4.1: estimation of the unknown pitch actuator
gain σ. The same fault simulation will be used as in the previous chapter: the pitch actuator
gain σ(k) changes abruptly from 1 to 2/3 at time instant k = 500. Only the MIMO setup is
considered: both measurements y1 = ẍnd and y2 = ∆Ωr are used. The IMM algorithm uses
a bank of Kalman filters, and it was shown in section 6.1.3 that a discrete-time Kalman filter
gives the best results when multiple system outputs are used.

7.4.1 Design of the model set

A set of two models must be defined, that can be used to estimate the unknown pitch actuator
gain σ. Consider the state-space representation (6.10)-(6.11) of the turbine system, where the
wind speed vw(k) is included in an augmented state. The parameter of interest for the model
set is the unknown pitch actuator gain σj(k), which is set to 1 for the nominal (fault-free)
mode, and to 2/3 for the faulty system mode. Only the pitch actuator gain depends on the
mode j; all state matrices are the same for both modes. This yields the model set (7.7)-(7.8).

[
x(k + 1)
vw(k + 1)

]
=
[
A Bh

0 1

] [
x(k)
vw(k)

]
+
[
Bσj(k)

0

]
u(k) +

[
Q1/2 0

0 Q
1/2
vw

] [
w̃(k)

w̃vw(k)

]
(7.7)

[
y1(k)
y2(k)

]
=
[
C1 Dh

C2 0

] [
x(k)
vw(k)

]
+
[
Dσj(k)

0

]
u(k) + R1/2ṽ(k) (7.8)

{
σ = 1 for the nominal mode
σ = 2/3 for the faulty mode

The model set (7.7)-(7.8) can be rewritten as

x̃(k + 1) = Ãx̃(k) + B̃ju(k) + Q̃1/2w̃vw(k)

y(k) = C̃x̃(k) + D̃ju(k) + R1/2ṽ(k)

7.4.2 Experimental issues

One cycle of the IMM algorithm was implemented in the m-file imm mimo.m. The m-file
mmod sigma.m contains the rest of the implementation of the IMM algorithm.

In analogy with Kanev & Verhaegen (2000), the overall estimate of the pitch actuator
gain σ(k) can be determined as a linear combination of the modal probabilities µj(k) and the
associated actuator gains σj :

σest(k) =
N∑

j=1

σjµj(k) (7.9)

The step size of the fault estimate is determined by the transition probability matrix
πij . It turned out to be important that the diagonal elements of πij are equal and the anti-
diagonal elements are equal as well, otherwise one mode may be favored over the other based
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7.4 IMM estimation of an unknown pitch actuator gain

on this transition probability. Therefore πij is always chosen symmetrical, as a function of
δ = 1 − π11, a small non-zero value:

πij =
[
1 − δ δ

δ 1 − δ

]

It was found, that the noise covariance Q on the turbine states can be set to zero. In
analogy with section 6.1.3, the covariance R of the measurement noise must be chosen non-
zero, otherwise a problem might occur in the IMM algorithm shown in table 7.3: the residual
covariance Sj(k) may become singular, so that the likelihood function cannot be calculated.

First IMM experiment: no measurement noise

In the first experiment, no measurement noise is present in the system outputs. Similar to
the discrete-time Kalman filter in section 6.1.3, the algorithm has two tuning parameters: the
random walk size Qvw of the wind estimate, and the value of π11, the diagonal element of
the transition probability matrix πij . As in section 6.1.3, the measurement noise covariance
matrix is set to R = 0.01 · Rsmn (6.12), and the covariance of the wind estimate to Qvw = 5.
Figure 7.1 compares the modal probabilities for several values of π11, the diagonal element of
the transition probability matrix.
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Figure 7.1: First IMM experiment: modal probabilities for different values of the transition proba-

bility matrix πij ; abrupt change in σ at t = 500.

Clearly, the value of π11 must be chosen very close to 1. For example, when π11 = 0.99
the IMM algorithm cannot distinguish very well between the models, which deteriorates the
estimate: it results in a relatively high modal probability for the model that is not in effect.
However, as π11 ↑ 1, the probability increases that the same system mode is estimated in the
next time step, which results in a slower response of the estimated σest(k) to a change in the
simulated σ(k). In extreme cases, a low value of π11 shows a 50/50 choice between the system
modes, and a value of π11 very close to one yields a 100% choice for one system modes. But,
if π11 is chosen closer to one, the switch time between the model sets increases.

The choice of the value of π11 is therefore a trade-off between estimation accuracy and
estimation speed: π11 plays the same role as the random walk size Ψ of the augmented state
σ(k) in the discrete-time Kalman filter implementation in section 6.1.3.
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Multiple-model estimation

Based on the results in figure 7.1, a value of π11 = 0.999 was selected. Figure 7.2 shows
the modal probabilities and figure 7.3 shows the estimate of the wind speed vw(k); the VAF
between real and estimated wind speed is equal to 99.5%. The estimated pitch actuator
σest(k) was calculated as (7.9), and the result is shown in figure 7.4; the VAF between real
and estimated pitch actuator gain was found to be 95.6%. The numerical derivative σ̇(k) was
calculated according to (6.16); the result is shown in figure 7.5. The steepest descent is found
at k = 510, 10 time steps after the simulated change in σ.
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Figure 7.2: First IMM experiment: modal

probabilities µj(k), when π11 = 0.999 and

Qvw
= 5. No measurement noise is present

in the outputs, and σ changes abruptly at

k = 500.
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Figure 7.3: First IMM experiment: wind

speed estimate vw(k), when π11 = 0.999 and

Qvw
= 5. No measurement noise is present

in the outputs, and σ changes abruptly at

k = 500.
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Figure 7.4: First IMM experiment: esti-

mated pitch actuator gain σest(k), calculated

according to (7.9) as a linear combination of

the modal probabilities shown in figure 7.2.
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ure 7.4, calculated as in (6.16).
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Multiple-model estimation

The estimated turbine states are shown in figure 7.6; they are a little less accurate than
with the regular discrete-time Kalman filter of section 6.1.3, since the overall state estimate
is produced as a weighted sum of the estimates for each model in the filter bank. Therefore,
at every time instant there is a contribution from the model that is not in effect at the time.
However, the VAF values between real and estimated states are still almost perfect (in %):

V AF (xe, xr) =
[

100.0 100.0 98.8 100.0 100.0 99.9 100.0 99.3 99.2 100.0
]T
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Figure 7.6: First IMM experiment: the real turbine states xr and the estimated turbine states xe.

Second IMM experiment: standard measurement noise

In this second experiment, standard measurement noise is present in the system outputs, as
described in section 3.6; the corresponding measurement noise covariance matrix R = Rsmn

(6.12) was selected.
The measurement noise in the system outputs has a similar effect as in section 6.1.3:

the quality of the estimates deteriorates slightly, and to obtain reliable results it is required
that a smaller value of Qvw is selected; with Qvw = 0.1 and π11 again set to 0.999, the
modal probabilities shown in figure 7.7 were obtained. The wind estimate vw(k) is shown in
figure 7.8, with a VAF of 98.2% between real and estimated wind speed. The estimate of the
pitch actuator gain σ is shown in figure 7.9, with a VAF of 96.2% between the estimated and
simulated σ(k). The numerical derivative σ̇(k) is shown in figure 7.10. It can still be used for
change detection: the steepest descent is found at k = 520, 20 time steps after the simulated
change in σ. However, it is clear that this method is less reliable: the derivative is more noisy,
because the estimate of σ is more noisy.
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Figure 7.7: Second IMM experiment: modal

probabilities µj(k), when π11 = 0.999 and

Qvw
) = 0.1. Standard measurement noise was

present in the system outputs, and σ changes

abruptly at k = 500.
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Figure 7.8: Second IMM experiment: wind

speed estimate vw(k), when π11 = 0.999 and

Qvw
) = 0.1. Standard measurement noise was

present in the system outputs, and σ changes

abruptly at k = 500.
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Figure 7.9: Second IMM experiment: esti-

mated pitch actuator gain σest(k), calculated

according to (7.9) as a linear combination of

the modal probabilities shown in figure 7.7.
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Figure 7.10: Second IMM experiment: nu-

merical derivative σ̇est(k) of the estimated

pitch actuator gain σest(k) that is shown in

figure 7.9, calculated as in (6.16).
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The state estimates (not shown, as they are similar to figure 7.6) are not as good as in the
simulation without measurement noise. However, the VAF values between real and estimated
states are still very high (in %):

V AF (xe, xr) =
[

99.2 99.4 99.6 99.9 99.6 95.9 97.3 98.6 99.5 98.3
]T

From simulations, an estimate was made of the required computation time Tcpu for one
time step of the IMM algorithm. An average of 100 cycles yields Tcpu = 1.7 · 10−3s. As
a comparison, one cycle of the regular discrete-time Kalman filter algorithm described in
section 6.1.3 has a computation time of Tcpu = 5.4 ·10−4s. The IMM algorithm is about three
times slower, which is logical: two Kalman filters are run in parallel instead of just one, which
means the algorithm should be at least twice as slow. As shown in table 7.3, each cycle step
also includes mixing of the estimates, as well as a mode probability update and a combination
of the estimates, which accounts for the rest of the extra computation time.

Analysis of the results

It was demonstrated in this section that the IMM estimator can be used to estimate the
states of the turbine system, the wind speed vw(k) and the pitch actuator gain σ(k). The
IMM algorithm requires a suitable model set to be defined for each FDI problem. The wind
speed vw(k) was included in an augmented system state, as described in section 6.1.2. A set
of two models was defined: the nominal model has a value of σ = 1, and the faulty model has
a value of σ = 2/3. An abrupt change in the pitch actuator gain from σ = 1 to σ = 2/3 was
simulated.

To evaluate the performance of the IMM algorithm, it is compared with the regular
discrete-time Kalman filter in section 6.1.3, that produces estimates for the turbine states,
wind speed and pitch actuator gain as well. Just as the Kalman filter implementation for this
FDI problem, the IMM algorithm has two tuning parameters: the random step Qvw of the
wind estimate vw(k), and the diagonal value π11 of the transition probability matrix.

A rapid switch in the mode probabilities occurs at the time of change when suitable values
of these tuning parameters are selected, so that the estimated pitch actuator gain follows
the change in the simulated pitch actuator gain in a reliable way. Even in the presence of
measurement noise, the wind speed and the turbine states were estimated very well. However,
these estimates were a little less accurate than those obtained with the regular discrete-time
Kalman filter algorithm.

The explanation of the lower performance lies in the choice of the transition probability
matrix πij . If the value of π11 is chosen very close to 1, the response of the estimate to a change
becomes very slow. A lower value of π11 results in faster change detection, but less accurate
estimates. This trade-off between estimation accuracy and estimation speed has the result
that π11 must be chosen in such a way that there is enough sensitivity to change detection.
Unfortunately, this means that at every time instant there is a non-zero contribution of the
model that is not in effect at that time, which accounts for the inaccuracy.

The IMM algorithm also requires more computation time: the algorithm is about three
times slower than the regular discrete-time Kalman filter algorithm. This is not a practical
limitation: both algorithms are certainly fast enough for real-time application.
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7.5 IMM estimation of an unknown pitch actuator delay

In this section, it is verified whether the IMM estimator algorithm described in section 7.3
can be used to solve the FDI problem defined in section 4.2: estimation of the unknown
pitch actuator delay. Only the MIMO setup is considered: the system outputs y1 = ẍnd and
y2 = ∆Ωr are used in the IMM algorithm.

7.5.1 Design of the model set

Recall the transfer function (3.6) from the desired pitch angle θp (the controller output) to
the delayed pitch angle θd

p:

θd
p

θp
=

(s − (p1 + j · p2)) · (s − (p1 − j · p2))
(s − (−p1 + j · p2)) · (s − (−p1 − j · p2))

The parameter pair (p1, p2) in this transfer function determines the pitch actuator delay.
Table 4.1 shows different values of (p1, p2) and the corresponding delay times. A fault-free
system has a delay of 0.2s; a deviation from this value can be seen as a fault in the system.

In section 4.2, the wind turbine system G0 was divided into a block d0 that contains the
delay (3.6), and a block G∗

0 that contains the rest of the wind turbine system. For a system
with a variable delay, the transfer function from the turbine system inputs u1(k) = vw(k)
and ū2 = ∆θp(k) to the turbine system outputs y1 = ẍnd and y2 = ∆Ωr was derived; the
discrete-time state-space representation of this transfer function is shown in (4.19)-(4.20).
When the controller state x̄(k) is omitted, it reduces to (7.10)-(7.11):[

x(k + 1)
x̃(k + 1)

]
=
[
A B2C̃

0 Ã

] [
x(k)
x̃(k)

]
+
[
B1 B2D̄

0 B̃

] [
u1(k)
ū2(k)

]
(7.10)

[
y1(k)
y2(k)

]
=
[
C1 D12C̃

C2 0

] [
x(k)
x̃(k)

]
+
[
D11 D12D̃

0 0

] [
u1(k)
ū2(k)

]
(7.11)

where [Ã, B̃, C̃, D̃] denote the state matrices of the delay block d0. It was shown in
section 4.2, that the matrices Ã, B̃ and C̃ have a different value for a different pair (p1, p2),
and that D̃ = 1 for all pairs (p1, p2).

To design the model set, a different delay is associated with a different system mode j. It
follows from (7.10)-(7.11) that the turbine matrices Aj , Bj and Cj are mode dependent and
that and Dj is the same for every mode j. Again, the wind speed vw(k) is included in an
augmented state system state; this yields a model set similar to (7.7)-(7.8):[

x(k + 1)
vw(k + 1)

]
=
[
Aj Bh,j

0 1

] [
x(k)
vw(k)

]
+
[
Bj

0

]
u(k) +

[
Q1/2 0

0 Q
1/2
vw

] [
w̃(k)

w̃vw(k)

]
(7.12)

[
y1(k)
y2(k)

]
=
[
C1,j Dh

C2,j 0

] [
x(k)
vw(k)

]
+
[
D

0

]
u(k) + R1/2ṽ(k) (7.13)

The model set (7.12)-(7.13) is denoted shortly as (7.14)-(7.15):

x̃(k + 1) = Ãj x̃(k) + B̃ju(k) + Q̃1/2w̃vw(k) (7.14)

y(k) = C̃j x̃(k) + D̃u(k) + R1/2ṽ(k) (7.15)
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As in the previous FDI problem in section 7.4, a model set with two modes is defined:{
delay=0.2s for the nominal mode
delay=0.4s for the faulty mode

7.5.2 Experimental issues

The wind turbine simulation model versie2.mdl was used to obtain the continuous-time
state matrices of the wind turbine for different values of the delay parameters (p1, p2). The
balanced realizations of these state matrices were calculated, and discretized with a sam-
ple time of 0.1s. For delay times of 0.2s, 0.3s and 0.4s, these system representations were
saved as turbmat d02.mat, turbmat d03.mat and turbmat d04.mat, respectively. The file
mmod delay.m contains the implementation of the IMM algorithm for detection of the un-
known pitch actuator delay; again, the function imm mimo.m is used to compute each cycle
of the IMM algorithm.

It must be noted that the delay affects the turbine behavior in a nonlinear way. Therefore,
the analogy with (7.9) cannot be made: it is not straightforward to define the estimated delay
as a linear combination of the delay times associated with the different modes in the model
set, with the modal probabilities as weighting factors. The model set consists of turbine
models with a pitch delay of 0.2s and 0.4s. An initial model probability of 1 is set for the
nominal system with a pitch delay of 0.2s. Batch-wise simulation experiments are used to test
the IMM algorithm, since they proved to give much insight in the problem. Three simulation
setups are considered: turbine systems with a pitch delay of 0.2s, 0.3s and 0.4s are simulated.

Experiments without measurement noise

For now, no measurement noise is present in the system outputs. As described in section 7.4,
the IMM algorithm requires a non-zero covariance matrix R of the measurement noise; it was
set to R = 0.01 · Rsmn (6.12), a value that corresponds to 10% of standard measurement
conditions. Again, the random walk size Qvw of the wind estimate and the value of the
diagonal element π11 in the transition probability matrix πij are the tuning parameters of the
IMM algorithm.

In the first experiment, a wind turbine with a pitch delay of 0.2s is simulated, the delay
value associated with the nominal system mode. The tuning parameters were set to Qvw = 5
and π11 = 0.997. This yields the modal probabilities shown in figure 7.11. Clearly, the
nominal mode is identified by the IMM algorithm: the modal probability that corresponds
to the nominal turbine model is larger than 0.93 for all k. The estimate of the wind speed
is shown in figure 7.12, with a VAF between real and estimated wind speed of 99.5%. The
turbine states were estimated very accurately: the result is very similar to figure 7.6, therefore
no plot is shown here. The following VAF values between real and estimated states were found
(in %):

V AF (xe, xr) =
[

100.0 100.0 99.5 100.0 100.0 99.9 99.9 100.0 100.0 100.0
]T

In the second experiment, a wind turbine with a faulty pitch delay of 0.4s is simulated, the
delay value associated with the faulty system mode. Again using Qvw = 5 and π11 = 0.997,
the modal probabilities shown in figure 7.13 were found. Clearly, the IMM algorithm detects
the faulty pitch delay: the modal probabilities corresponding to the faulty mode with a delay
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Figure 7.11: First IMM experiment to detect

the pitch delay: modal probabilities µj(k),
when π11 = 0.997 and Qvw

= 5. No measure-

ment noise is present in the outputs; a pitch

delay of 0.2s was simulated.
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Figure 7.12: First IMM experiment to detect

the pitch delay: wind speed estimate vw(k),
when π11 = 0.997 and Qvw

= 5. No measure-

ment noise is present in the outputs; a pitch

delay of 0.2s was simulated.
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Figure 7.13: Second IMM experiment to

detect the pitch delay: modal probabilities

µj(k), when π11 = 0.997 and Qvw
= 5. No

measurement noise is present in the outputs;

a pitch delay of 0.4s was simulated.
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Figure 7.14: Second IMM experiment to de-

tect the pitch delay: wind speed estimate

vw(k), when π11 = 0.997 and Qvw
= 5. No

measurement noise is present in the outputs;

a pitch delay of 0.4s was simulated.

of of 0.4s start to increase at k = 1. A clear identification of the delay is obtained for k > 600,
since the modal probability corresponding to the faulty turbine model is larger than 0.93 for
k > 600. The estimate of the wind speed vw(k) is shown in figure 7.14; the VAF between
real and estimated wind speed was found to be 99.4%. The state estimates are shown in
figure 7.15. For low values of k, there is a mismatch between the simulated and estimated
turbine states, which results in lower VAF values (in %):

V AF (xe, xr) =
[

99.0 98.7 93.9 99.6 100.0 80.8 68.3 18.0 36.8 100.0
]T
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The IMM algorithm calculates the state estimates as a weighted sum of the states of the
two turbine system modes in the model set. For low values of k, there is a large contribution
from the nominal model with a delay of 0.2s. Therefore, the overall state estimates do not
match the states of the simulated model, which results in the lower VAF values. For k > 600,
the modal probability for the faulty turbine model with a delay of 0.4s has a value larger 0.93,
so the overall state estimates are a much better approximation of the real state estimates. In
fact, for k > 600 the quality of the state estimates is comparable to the state estimates in the
first experiment.
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Figure 7.15: Second IMM experiment to detect a pitch delay: the real turbine states xr and the

estimated turbine states xe.

In the third experiment, a wind turbine is simulated with a faulty pitch delay of 0.3s. The
model set still consists of a nominal model with a delay of 0.2s and a faulty model with a delay
of 0.4s. Again using Qvw = 5 and π11 = 0.997, the modal probabilities were found that are
shown in figure 7.16. For k < 400, not much happens; this was the case for various values of
the tuning parameters. After that, the modal probabilities change: almost equal probabilities
are found for delay values of 0.2s and 0.4s, though 0.4s is favored a little. Apparently, the
dynamics of a wind turbine model with a delay of 0.3s is slightly better approximated by a
model with a delay of 0.4s than by a model with a delay of 0.2s. The estimate of vw(k) (not
shown) is still good; the VAF between real and estimated wind speed is 99.5%. The state
estimates (not shown) are not so good, especially for the states with a low amplitude, as can
be seen from the VAF values (in %) between real and estimated states:

V AF (xe, xr) =
[

98.5 97.9 83.1 98.9 100.0 -97.7 -103.2 -233.3 -237.3 100.0
]T

This is an understandable result. The IMM algorithm reconstructs the state estimates of
the simulated wind turbine as a weighted combination of the state estimates from Kalman
filter bank. Since the delay affects in the turbine behavior in a nonlinear way, it is simply
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7.5 IMM estimation of an unknown pitch actuator delay

not possible to reconstruct all states of the simulated model as a linear combination of the
states of the filter bank models, since the model set only contains models with a delay of 0.2s
and 0.4s. The estimates of the states with a low amplitude have the lowest quality, but these
states don’t contribute much to the system output. Therefore, the IMM algorithm still yields
a good wind estimate and indicates that the simulated delay lies between 0.2s and 0.4s. For
a discrete system with a sample time of 0.1s, this is an easy choice: 0.3s is the only possible
value for the delay. However, it is clear from figure 7.16 that this result is not very reliable:
no detection is obtained during the first 400 time instants.
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Figure 7.16: Third IMM experiment to

detect the pitch delay: modal probabilities

µj(k), when π11 = 0.997 and Qvw
= 5. No

measurement noise is present in the outputs;

a pitch delay of 0.3s was simulated.
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Figure 7.17: Fourth IMM experiment to de-

tect the pitch delay: a pitch delay of 0.4s was

simulated (as in figure 7.13, with standard

measurement present in the outputs. This fig-

ure shows the modal probabilities µj(k), when

π11 = 0.9995 and Qvw
= 0.5.

An experiment with measurement noise

To illustrate the effect of measurement noise in the outputs, the second experiment is repeated:
a delay of 0.4s is simulated with standard measurement noise in the outputs, as defined in
section 3.6; the measurement noise covariance matrix was set to R = Rsmn (6.12).

The tuning of the parameters Qvw and π11 was found to be analogous to section 6.1.3:
the performance of the algorithm deteriorates in the presence of measurement noise, and
the freedom of the estimates must be reduced to obtain reliable estimates. Therefore, Qvw

was lowered to 0.5 and π11 was increased to 0.9995. The modal probabilities are shown
in figure 7.17. Compared with figure 7.13, the modal probabilities for the same simulation
without measurement noise, it is clear that the IMM estimator can identify the faulty delay
of 0.4s, even though there is more noise in the modal probabilities. The VAF between the
real wind speed vw(k) and the wind estimate (not shown) was found to be 98.2%.

Analysis of the results

It was found, that the IMM estimator can be used to identify the unknown pitch delay, even
though the delay has a nonlinear effect on the behavior of the wind turbine. Four batch-wise
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experiments were used to demonstrate this. The wind speed was included in an augmented
system state, and the model set consisted of the nominal model (the initial model, with a
delay of 0.2s), and a faulty model (with a delay of 0.4s).

In the first experiment, a pitch delay of 0.2s was simulated without measurement noise
present in the system outputs. The pitch delay was clearly identified, and the state and wind
estimates were found to be very reliable.

In the second experiment, a pitch delay of 0.4s was simulated without measurement noise
present in the system outputs. The delay of 0.4s was detected and accurately identified after
a transition time of the modal probabilities. Some of the estimated turbine states were not
so accurate during the transition period. However, after the transition period, the state and
wind estimates were just as accurate as in the first experiment.

In the third experiment, a pitch delay of 0.3s was simulated, again without measurement
noise present in the system outputs. The state estimates were not reliable: due to the
nonlinear effect of the delay on the turbine behavior, it is simply not possible to reconstruct
all states of the wind turbine with a pitch delay of 0.3s as a linear combination of the state
estimates of the model set, that contains models of wind turbines with delay times of 0.2s
and 0.4s. The FDI performance of this third experiment was not very good: for the first
400 time instants, the modal probabilities stayed the almost the same. For k > 400, the
modal probabilities indicated a delay time between 0.2s and 0.4s. Since the sample time of
the system is 0.1s, this is equivalent to identification of a delay time of 0.3s.

Combining this result with the quick fault detection and clear fault identification in the
second experiment, it can be concluded that it is a good idea to include the model for 0.3s as
a third model in the bank of Kalman filters, if it is desirable to estimate this particular value
of the pitch delay time.

The fourth experiment demonstrated that the IMM estimator can be used to detect a
faulty pitch delay when standard measurement noise is present in the system outputs. As in
the previous FDI problem, the measurement noise deteriorates the quality of the estimates.
The tuning parameters of the algorithm had to be tuned so that less freedom is allowed on
the estimates; with a lower value of Qvw and a higher value of π11, the faulty pitch delay
could be detected and identified in a reliable way.
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7.6 Conclusions

In this chapter, it was investigated whether multiple-model (MM) estimation, a special class
of observer-based estimation, can be applied for FDI purposes in a closed-loop HAWT sys-
tem. Only the Interacting Multiple-Model (IMM) algorithm was considered, as it has been
demonstrated in literature that this algorithm has a superior performance for FDI problems.

For each FDI problem, a model set must be designed that contains models to describe
different behavior modes of the actual system, e.g. a healthy and a faulty description. A bank
of Kalman filters is then designed that compares the current system behavior to the behavior
predicted by each system mode, yielding a probability that each mode is in effect. The overall
system state is then reconstructed as a linear combination of the different behavior modes,
using the modal probabilities as weighting factors.

It was demonstrated in this chapter that the IMM estimator can be used to solve both
FDI problems defined in chapter 4: identification of the unknown blade pitch actuator gain
and the unknown blade pitch delay in a wind turbine system. The wind speed vw(k) was
included in an augmented system state, so it could be estimated as well.

The IMM algorithm was successfully implemented to detect a change in the pitch actuator
gain and to estimate a reliable value. The algorithm has two tuning parameters: the random
walk size of the wind estimate and the diagonal value π11 of the transition probability matrix
determine the change rate of the estimates. When measurement noise is present in the system
outputs, the estimate quality deteriorates. In that case, the change rate must be lowered to
reduce the influence of the noise on the estimates. This behavior is similar to that of the
discrete Kalman filter in section 6.1.3, but the performance of the IMM algorithm is lower:
the estimate quality is a little lower, because of the non-zero contribution of the model that is
not in effect at every time instant. Furthermore, the computation time is about three times
larger.

The IMM algorithm has one large advantage over the discrete-time Kalman filter algo-
rithm: it is applicable to a much wider range of FDI scenarios. While a regular discrete-time
Kalman filter can only be used to estimate a scalar parameter or variable, the IMM estima-
tor can distinguish between systems with completely different state matrices. For each FDI
scenario, it is only required that a suitable model set is defined.

It was shown that the IMM algorithm can clearly detect a deviation of the pitch actuator
gain from normal operating conditions and yield a reliable FDI scheme, provided that the
simulated value of the delay matches a delay value that is included in the model set. Again,
the presence of measurement noise deteriorates the quality of the estimates, and the change
rate of the estimates must be lowered to reduce the influence of the noise on the estimates.

It was demonstrated that it is possible to detect a delay that is not included in the model
set. However, this result was found to be unreliable, as the delay affects the turbine behavior in
a nonlinear way. The IMM algorithm reconstructs the overall state as a linear combination of
the states estimated by the bank of Kalman filters, and it is simply not possible to reconstruct
the state of a turbine with a certain delay value as a weighted combination of the states of
turbines with different delay values. It is therefore better to design a model set, that contain
a turbine model for each value of interest of the pitch delay.
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Chapter 8

Conclusions and recommendations

8.1 Conclusions

In this thesis, time-domain model-based fault detection and identification (FDI) methods have
been applied to the field of wind engineering; a literature survey showed no prior applications.
The aim of this research was to design an algorithm that detects and identifies faulty process
parameters in a wind turbine under operating conditions. Such a scheme is particularly
important for an offshore wind turbine: if the condition of the turbine components can be
monitored, it is possible to reduce the maintenance costs and increase the annual availability
and energy yield of the wind turbine.

A realistic simulation model of a Horizontal Axis Wind Turbine (HAWT) under operating
conditions was designed, which was used to study two classes of model-based FDI methods:
the system identification approach, and observer-based approaches using the Kalman filter.
A brief overview of what has been discussed in the thesis follows.

8.1.1 The simulation setup

The physical behavior of a prototype of an offshore HAWT using pitch-to-vane control was
linearized in the vicinity of the most important operating point, in which the wind turbine
reaches full load operation. It was used as a simulation environment under pre-defined oper-
ating conditions: the closed-loop system was considered, with the wind speed as an unknown
disturbance input, the blade pitch angle as the controlled input, and the rotor rotational
frequency and the tower vibration accelerations as outputs, see figure 4.1.

Two FDI scenarios were defined: the identification of an unknown pitch actuator gain and
an unknown pitch actuator delay.

8.1.2 FDI using system identification

The system identification approach to FDI problems is not applicable to a wind turbine. Be-
cause of the closed-loop operating conditions and the fact that the wind speed is an unknown
disturbance input, no reliable system model can be identified by using direct identification.
Instead, the system model that is identified from input/output data describes the negative
inverse controller.
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8.1.3 FDI based on the Kalman filter

To investigate observer-based approaches, knowledge of the nominal HAWT system model
was assumed. Three approaches were investigated, all based on the Kalman filter:

• The regular discrete-time Kalman filter,

• the Kalman filter, rewritten as an LMS problem over a moving time window, and

• the IMM estimator, that uses a bank of Kalman filters.

All algorithms yield better results when the algorithm uses multiple system outputs, rather
than only the controlled output. The wind speed was included in an augmented state for all
methods, so it could be estimated. Since the wind speed is the driving disturbance input of
the wind turbine, it proved to be important to estimate its value.

It was found that the Kalman filter can be rewritten during a moving time window, both
as a linear and a nonlinear LMS algorithm. However, these methods have little practical
relevance. The main shortcoming is the lack of a tuning parameter that restricts the freedom
of the fault estimate, and the fact that the algorithms have too much other tuning parameters.
This resulted in either noisy or biased estimates. Finally, these algorithms require way too
much computation time.

It was shown that the discrete-time Kalman filter and the IMM estimator can be used in
reliable FDI schemes, even when measurement noise is present in the system outputs. Both
algorithms have two tuning parameters that determine the rate of change of the fault and
wind estimates. The choice of the change rates is a trade-off between estimation speed and
estimation accuracy. When measurement noise is present in the system outputs, the change
rates must be lowered to reduce the influence of the noise on the estimates. Both algorithms
have a lower performance in the presence of measurement noise.

The regular discrete-time Kalman filter proved to be the best algorithm to identify the
unknown pitch actuator gain, when the actuator gain was included in the augmented system
state as well. The IMM algorithm with a filter bank consisting of two models is about three
times slower, but both algorithms can be applied in real-time. The IMM algorithm yields
estimates of a lower quality, since at each time instant there is a non-zero contribution of the
model that is not in effect at the time. However, this is only a slight difference.

The IMM algorithm proved to be the best algorithm to estimate the unknown pitch actu-
ator delay. The reason is that the regular discrete-time Kalman filter cannot be implemented
to solve this FDI problem: the delay affects the system behavior in a nonlinear way, which
cannot be represented by a single parameter that can be included in an augmented system
state. The IMM algorithm can clearly detect a deviation of the pitch actuator gain from
normal operating conditions and it can be used in a reliable FDI scheme, provided that the
simulated value of the delay matches a delay value in the bank of Kalman filters.

It can be concluded that the discrete-time Kalman filter algorithm has a superior perfor-
mance when the parameter that has to be estimated affects the system linearly. For such
an FDI problem, the IMM algorithm has a slightly lower performance, but this algorithm is
more versatile: when a suitable model set can be defined to cover the dynamic range of an
FDI problem, it can also be used to identify nonlinear effects.
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8.2 Recommendations

This thesis presented two FDI methods based on the Kalman filter, that can be applied to a
HAWT simulation model. It should be verified whether these methods can be applied to a
real wind turbine system. Some recommendations towards this verification are given below.

8.2.1 Improving the simulation model: a nonlinear model?

There are several options to modify the linear HAWT model so that it better describes a
realistic offshore HAWT. It is expected that the introduction of a non-zero hydrodynamic
load disturbance will result in a higher excitation of the naying vibrations, so that it becomes
important to use this output in the Kalman algorithms. It might then be necessary to
implement a secondary control loop that reduces the naying vibrations by controlling the
generator torque, in order to make the simulation more realistic.

Including the dynamic inflow effect of blade pitching results in a more realistic description
of the control action.

It should be investigated whether it is possible to obtain an accurate linear model that
describes the behavior of a real wind turbine under operating conditions. Since a real wind
turbine is a complex nonlinear system under various operating conditions, this is not expected
to be possible. Therefore, it is a good idea to design a nonlinear HAWT simulation model,
that can be used to design more realistic FDI schemes.

8.2.2 Local linear models

It was demonstrated in this thesis that FDI methods can be implemented for a local linear
model of the wind turbine system. Based on the divide-and-conquer strategy, Verdult (2002)
showed that it is possible to design a set of local linear models to approximate a nonlinear
system in the entire operating range. If a model set can be designed for a wind turbine
system under nominal as well as faulty operating conditions, this yields a batch of models
that together describe all possible behavior modes of the wind turbine.

The IMM algorithm might then be used to switch between these modes to identify the
most probable mode at each time. Since it was shown in this thesis that the IMM algorithm
is also sensitive to nonlinear changes in the turbine behavior, a suitable model set might
yield an FDI scheme that covers several fault scenarios in the entire dynamic range of a wind
turbine.

8.2.3 Nonlinear Kalman filter

It was demonstrated in this thesis that FDI problems in a linear HAWT model can be solved
by methods based on the linear Kalman filter. It is an interesting parallel to verify whether
nonlinear Kalman filter approaches (Boutayeb et al., 1997) can be used for FDI in a nonlinear
HAWT.

8.2.4 Controller reconfiguration

In this thesis, two FDI methods were presented that can detect a change in the blade pitch
actuator gain and identify a reliable value of this actuator gain. It should be verified whether
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it is always necessary to shut down the wind turbine when a faulty actuator gain is detected
and identified. In some situations, a fault might not be critical to the system. It is then
profitable to reconfigure the controller, so that the wind turbine can still yield energy while
a maintenance crew is on its way to repair the damage that causes the fault.

As described in Kanev & Verhaegen (2000), controller reconfiguration for a faulty actuator
gain is straightforward: a faulty non-zero actuator gain g can be compensated by multiplying
the controller gain by g−1, so that the desired control action is reconstructed. It might be
possible to implement a controller reconfiguration strategy for other fault scenarios as well.
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Appendix A

Linear state-space systems

Several methods are described in literature for the modeling of linear systems, based on
transfer function models, parametric models and state-space models. Extensive overviews are
given in Ljung (1987) and Verhaegen & Verdult (2001). This appendix gives an overview of
discrete-time linear state-space system descriptions, which can be classified according to their
time characteristics. A Linear Time Variant (LTV) system is used to describe a system that
changes in time, and a Linear Time Invariant (LTI) system is used to describe a system that
is constant in time.

A.1 The discrete-time LTV system

According to Ljung (1987) and Verhaegen & Verdult (2001), a discrete Linear Time Variant
(LTV) system can be represented as

x(k + 1) = A(k)x(k) + B(k)u(k) + w(k) (A.1)

y(k) = C(k)x(k) + D(k)u(k) + v(k) (A.2)

with the state matrices A(k) ∈ R
n×n, B(k) ∈ R

n×m, C(k) ∈ R
�×n and D(k) ∈ R

�×m, the state
vector x ∈ R

n, the input vector u ∈ R
m and the output vector y ∈ R

l. k ∈ N
+ is the time

instant. The state noise vector w ∈ R
n represents the process noise, and v ∈ R

� represents
the measurement noise. For many applications, these noise sequences can be considered as
zero-mean white noise sequences. Often, the matrix D(k) is equal to zero, which means that
the system input u(k) does not have an immediate effect on the system output y(k).

A.2 The discrete-time LTI system

When the system matrices A(k), B(k), C(k) and D(k) in (A.1)-(A.2) are not depending
on the time instant k, the system dynamics are constant in time. The system can then be
described as a Linear Time Invariant (LTI) system:

x(k + 1) = Ax(k) + Bu(k) + w(k) (A.3)

y(k) = Cx(k) + Du(k) + v(k) (A.4)
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Appendix B

Horizontal axis wind turbine

In Hau (2000), various types of wind energy converters are described. In this thesis, only
the horizontal axis wind turbine (HAWT) is considered. Though a vertical axis design has
the advantage of rotational symmetry, almost all wind turbines for generating electricity are
of the HAWT type (EWEA, 1997). A HAWT has a higher aerodynamic efficiency; see Hau
(2000) for a calculation. Since a blade pitch mechanism can be used, it is easier to control
the power output of a HAWT. Finally, there is a technological lead in the development of the
propeller design.

Figure B.1: A representative HAWT, as described in Hau (2000).

A representative HAWT with its most important components is shown in figure B.1. These
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and other components are briefly introduced in this appendix. As far as deemed relevant for
this thesis, more information on several components is presented in chapter 3. For further
reading, see e.g. Hau (2000) and Van Engelen et al. (2001b).

Simply said, a HAWT consists of a rotor on top of a tower. The foundation ensures that
the tower stays upright despite the forces of the wind. The purpose of the rotor, of course,
is to convert the linear motion of the wind into rotational energy: the rotor shaft is set into
motion, which is used to drive a generator, where electrical energy is generated.

The rotor blades are attached to the rotor shaft at the rotor hub with the blade pitch
mechanism, that is used for control of the rotor speed and the power output: the blades are
pitched around their longitudinal axis to decrease or increase the aerodynamic torque on the
rotor.

The rotor bearings are used to maintain the position and alignment of the rotor shaft.
Often, the rotor shaft consists of two parts: the rotor blades set the so-called slow shaft into
motion. The slow shaft is the input to a gear box that transfers the rotational energy to the
fast shaft. The fast shaft has a higher rotational frequency, which improves the energy yield
in the generator. Often there is a rotor brake on the fast shaft, to stop the rotation if needed.

All rotating parts of the wind turbine are commonly referred to as the drive train. The
box on top of the wind turbine is called the nacelle; its bed plate is connected to the tower.
The nacelle and rotor can be turned into the wind direction by the yaw system.

The wind turbine control system consists of a number of computers which continuously
monitor the condition of the wind turbine and collect statistics on its operation. As the name
implies, the controller also controls a large number of electrical switches, hydraulic pumps,
valves and motors within the wind turbine. The electrical current generated by the wind
turbine generator is fed through the tower by the power cables, to a grid connection at the
tower basis.

Vw

xny

xnd

Figure B.2: The nodding-naying reference frame.

Tower vibrations are often described in the nodding-naying reference frame, as defined in
figure B.2. The nodding direction the direction opposite to the wind direction; the naying
direction is the direction perpendicular to the nodding direction, and parallel to the earth’s
surface.
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Appendix C

List of files

The Matlab and Simulink files that have been used in this thesis are listed below. These files
are only available for members of the graduation committee and participants in the NOVEM
project. For download, see http://www.stijndonders.nl (June 2002). Please contact the
author for a username and a password.

C.1 The HAWT simulation model and the associated data

• versie2.mdl (section 3.5):
The Simulink model for a HAWT model with measured outputs ∆Ωr, ẍnd and ẍny,
linearized in the operating point where the HAWT reaches full load operation.

• constants.m (section 3.4):
The constants and parameters for the HAWT simulation model of a 6 MW prototype.

• wind1p2.mat (section 3.1.1):
A rotor-effective wind speed input sequence, designed by ECN.

• turbmat vib.mat (section 3.5):
Continuous-time state matrices of a HAWT with measured outputs ∆Ωr and ẍnd: the
fault-free HAWT model, with a pitch actuator gain of 1 and a pitch delay of 0.2s.

• turbmat d02.mat, turbmat d03.mat, turbmat d04.mat (section 7.5):
The balanced realizations of the discrete-time HAWT system with measured outputs
∆Ωr and ẍnd, with a pitch actuator delay of 0.2s, 0.3s and 0.4s, respectively. Note that
turbmat d02.mat contains the discrete-time balanced realization of turbmat vib.mat.

C.2 Functions

• simulator.m (section 3.5):
Function for simulating a discrete-time HAWT system; see help contents for syntax.

• simulator abrupt.m (section 6.1.3):
Modified version of simulator.m, for simulating a change in the pitch actuator gain σ.
A change time can be set, as well as the value of σ before and after the change; see help
contents for syntax.
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List of files

• it kalm.m (section 6.1):
Computes the current Kalman gain K(k) and the predicted noise covariance P̂ (k +1|k)
for one cycle of the discrete-time Kalman algorithm.

• jnsig.m (section 6.4):
Creates the vector JN (σ) that represents the cost function of the nonlinear minimization
problem (6.56) for a given σ.

• imm mimo.m (chapter 7):
Computes one cycle of the IMM algorithm, as described in table 7.3.

C.3 Algorithms

• clident.m (chapter 5):
EIV-MOESP is used for system identification based on a batch of closed-loop measure-
ments of the wind turbine system.

• mrk w.m (section 6.1.2):
The wind speed is estimated with the discrete-time Kalman filter. It is included in an
augmented system state.

• mrk ws.m (section 6.1.3):
The wind speed and the unknown pitch actuator gain are estimated with the discrete-
time Kalman filter. Both the unknown variables are included in an augmented system
state.

• linkalwin.m (section 6.3):
The wind speed and the unknown pitch actuator gain are estimated with the Kalman
filter, defined as a linear LMS problem over a moving time window. The wind speed is
included in an augmented system state, and the pitch actuator gain is estimated as an
average value during the moving time window.

• nonlinkalwin.m (section 6.4):
The wind speed and the unknown pitch actuator gain are estimated with the Kalman
filter defined as a nonlinear LMS problem over a moving time window. The wind speed
is included in an augmented system state. The pitch actuator gain is estimated as
a solution to a nonlinear optimization procedure, yieling an average value during the
moving time window.

• mmod sigma (section 7.4):
The wind speed and the unknown pitch actuator gain are estimated with the IMM
estimator. The wind speed is included in an augmented system state, and a model set
is defined that describes a HAWT with a nominal and faulty pitch actuator gain.

• mmod delay (section 7.5):
The wind speed and the unknown pitch actuator delay are estimated with the IMM
estimator. The wind speed is included in an augmented system state, and a model set
is defined that describes a HAWT with a nominal and a faulty pitch actuator delay.
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